| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfi1.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | simpl2 |  |-  ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> P e. Prime ) | 
						
							| 3 |  | simpl1 |  |-  ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> G e. Grp ) | 
						
							| 4 |  | simpll3 |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> N e. NN0 ) | 
						
							| 5 | 3 | adantr |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> G e. Grp ) | 
						
							| 6 |  | simplr |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( # ` X ) = ( P ^ N ) ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> P e. Prime ) | 
						
							| 8 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> P e. NN ) | 
						
							| 10 | 9 4 | nnexpcld |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( P ^ N ) e. NN ) | 
						
							| 11 | 10 | nnnn0d |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( P ^ N ) e. NN0 ) | 
						
							| 12 | 6 11 | eqeltrd |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( # ` X ) e. NN0 ) | 
						
							| 13 | 1 | fvexi |  |-  X e. _V | 
						
							| 14 |  | hashclb |  |-  ( X e. _V -> ( X e. Fin <-> ( # ` X ) e. NN0 ) ) | 
						
							| 15 | 13 14 | ax-mp |  |-  ( X e. Fin <-> ( # ` X ) e. NN0 ) | 
						
							| 16 | 12 15 | sylibr |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> X e. Fin ) | 
						
							| 17 |  | simpr |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> x e. X ) | 
						
							| 18 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 19 | 1 18 | oddvds2 |  |-  ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) | 
						
							| 20 | 5 16 17 19 | syl3anc |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( # ` X ) ) | 
						
							| 21 | 20 6 | breqtrd |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) || ( P ^ N ) ) | 
						
							| 22 |  | oveq2 |  |-  ( n = N -> ( P ^ n ) = ( P ^ N ) ) | 
						
							| 23 | 22 | breq2d |  |-  ( n = N -> ( ( ( od ` G ) ` x ) || ( P ^ n ) <-> ( ( od ` G ) ` x ) || ( P ^ N ) ) ) | 
						
							| 24 | 23 | rspcev |  |-  ( ( N e. NN0 /\ ( ( od ` G ) ` x ) || ( P ^ N ) ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) ) | 
						
							| 25 | 4 21 24 | syl2anc |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) ) | 
						
							| 26 | 1 18 | odcl2 |  |-  ( ( G e. Grp /\ X e. Fin /\ x e. X ) -> ( ( od ` G ) ` x ) e. NN ) | 
						
							| 27 | 5 16 17 26 | syl3anc |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( ( od ` G ) ` x ) e. NN ) | 
						
							| 28 |  | pcprmpw2 |  |-  ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> ( ( od ` G ) ` x ) = ( P ^ ( P pCnt ( ( od ` G ) ` x ) ) ) ) ) | 
						
							| 29 |  | pcprmpw |  |-  ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) <-> ( ( od ` G ) ` x ) = ( P ^ ( P pCnt ( ( od ` G ) ` x ) ) ) ) ) | 
						
							| 30 | 28 29 | bitr4d |  |-  ( ( P e. Prime /\ ( ( od ` G ) ` x ) e. NN ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) | 
						
							| 31 | 7 27 30 | syl2anc |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> ( E. n e. NN0 ( ( od ` G ) ` x ) || ( P ^ n ) <-> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) | 
						
							| 32 | 25 31 | mpbid |  |-  ( ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) /\ x e. X ) -> E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) | 
						
							| 33 | 32 | ralrimiva |  |-  ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> A. x e. X E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) | 
						
							| 34 | 1 18 | ispgp |  |-  ( P pGrp G <-> ( P e. Prime /\ G e. Grp /\ A. x e. X E. n e. NN0 ( ( od ` G ) ` x ) = ( P ^ n ) ) ) | 
						
							| 35 | 2 3 33 34 | syl3anbrc |  |-  ( ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) /\ ( # ` X ) = ( P ^ N ) ) -> P pGrp G ) | 
						
							| 36 | 35 | ex |  |-  ( ( G e. Grp /\ P e. Prime /\ N e. NN0 ) -> ( ( # ` X ) = ( P ^ N ) -> P pGrp G ) ) |