| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfi.1 |  |-  X = ( Base ` G ) | 
						
							| 2 | 1 | pgpfi |  |-  ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) ) ) | 
						
							| 3 |  | id |  |-  ( P e. Prime -> P e. Prime ) | 
						
							| 4 | 1 | grpbn0 |  |-  ( G e. Grp -> X =/= (/) ) | 
						
							| 5 |  | hashnncl |  |-  ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) | 
						
							| 6 | 4 5 | syl5ibrcom |  |-  ( G e. Grp -> ( X e. Fin -> ( # ` X ) e. NN ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( G e. Grp /\ X e. Fin ) -> ( # ` X ) e. NN ) | 
						
							| 8 |  | pcprmpw |  |-  ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 9 | 3 7 8 | syl2anr |  |-  ( ( ( G e. Grp /\ X e. Fin ) /\ P e. Prime ) -> ( E. n e. NN0 ( # ` X ) = ( P ^ n ) <-> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 10 | 9 | pm5.32da |  |-  ( ( G e. Grp /\ X e. Fin ) -> ( ( P e. Prime /\ E. n e. NN0 ( # ` X ) = ( P ^ n ) ) <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) | 
						
							| 11 | 2 10 | bitrd |  |-  ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) |