| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpfi.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | simpl |  |-  ( ( P pGrp G /\ X e. Fin ) -> P pGrp G ) | 
						
							| 3 |  | pgpgrp |  |-  ( P pGrp G -> G e. Grp ) | 
						
							| 4 | 1 | pgpfi2 |  |-  ( ( G e. Grp /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( P pGrp G /\ X e. Fin ) -> ( P pGrp G <-> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) ) | 
						
							| 6 | 2 5 | mpbid |  |-  ( ( P pGrp G /\ X e. Fin ) -> ( P e. Prime /\ ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) | 
						
							| 7 | 6 | simprd |  |-  ( ( P pGrp G /\ X e. Fin ) -> ( # ` X ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |