| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n |  |-  G = ( toCPreHil ` W ) | 
						
							| 2 |  | tcphcph.v |  |-  V = ( Base ` W ) | 
						
							| 3 |  | tcphcph.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | tcphcph.1 |  |-  ( ph -> W e. PreHil ) | 
						
							| 5 |  | tcphcph.2 |  |-  ( ph -> F = ( CCfld |`s K ) ) | 
						
							| 6 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> W e. LMod ) | 
						
							| 8 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 9 |  | phllvec |  |-  ( W e. PreHil -> W e. LVec ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> W e. LVec ) | 
						
							| 11 | 3 | lvecdrng |  |-  ( W e. LVec -> F e. DivRing ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> F e. DivRing ) | 
						
							| 13 | 8 5 12 | cphsubrglem |  |-  ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 14 | 13 | simp1d |  |-  ( ph -> F = ( CCfld |`s ( Base ` F ) ) ) | 
						
							| 15 | 13 | simp3d |  |-  ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) ) | 
						
							| 16 | 3 8 | isclm |  |-  ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) | 
						
							| 17 | 7 14 15 16 | syl3anbrc |  |-  ( ph -> W e. CMod ) |