Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
|- G = ( toCPreHil ` W ) |
2 |
|
tcphcph.v |
|- V = ( Base ` W ) |
3 |
|
tcphcph.f |
|- F = ( Scalar ` W ) |
4 |
|
tcphcph.1 |
|- ( ph -> W e. PreHil ) |
5 |
|
tcphcph.2 |
|- ( ph -> F = ( CCfld |`s K ) ) |
6 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
7 |
4 6
|
syl |
|- ( ph -> W e. LMod ) |
8 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
9 |
|
phllvec |
|- ( W e. PreHil -> W e. LVec ) |
10 |
4 9
|
syl |
|- ( ph -> W e. LVec ) |
11 |
3
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
12 |
10 11
|
syl |
|- ( ph -> F e. DivRing ) |
13 |
8 5 12
|
cphsubrglem |
|- ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
14 |
13
|
simp1d |
|- ( ph -> F = ( CCfld |`s ( Base ` F ) ) ) |
15 |
13
|
simp3d |
|- ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
16 |
3 8
|
isclm |
|- ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
17 |
7 14 15 16
|
syl3anbrc |
|- ( ph -> W e. CMod ) |