Metamath Proof Explorer


Theorem phclm

Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses tcphval.n
|- G = ( toCPreHil ` W )
tcphcph.v
|- V = ( Base ` W )
tcphcph.f
|- F = ( Scalar ` W )
tcphcph.1
|- ( ph -> W e. PreHil )
tcphcph.2
|- ( ph -> F = ( CCfld |`s K ) )
Assertion phclm
|- ( ph -> W e. CMod )

Proof

Step Hyp Ref Expression
1 tcphval.n
 |-  G = ( toCPreHil ` W )
2 tcphcph.v
 |-  V = ( Base ` W )
3 tcphcph.f
 |-  F = ( Scalar ` W )
4 tcphcph.1
 |-  ( ph -> W e. PreHil )
5 tcphcph.2
 |-  ( ph -> F = ( CCfld |`s K ) )
6 phllmod
 |-  ( W e. PreHil -> W e. LMod )
7 4 6 syl
 |-  ( ph -> W e. LMod )
8 eqid
 |-  ( Base ` F ) = ( Base ` F )
9 phllvec
 |-  ( W e. PreHil -> W e. LVec )
10 4 9 syl
 |-  ( ph -> W e. LVec )
11 3 lvecdrng
 |-  ( W e. LVec -> F e. DivRing )
12 10 11 syl
 |-  ( ph -> F e. DivRing )
13 8 5 12 cphsubrglem
 |-  ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) )
14 13 simp1d
 |-  ( ph -> F = ( CCfld |`s ( Base ` F ) ) )
15 13 simp3d
 |-  ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) )
16 3 8 isclm
 |-  ( W e. CMod <-> ( W e. LMod /\ F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) )
17 7 14 15 16 syl3anbrc
 |-  ( ph -> W e. CMod )