Metamath Proof Explorer


Theorem phi1

Description: Value of the Euler phi function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phi1
|- ( phi ` 1 ) = 1

Proof

Step Hyp Ref Expression
1 1nn
 |-  1 e. NN
2 phicl2
 |-  ( 1 e. NN -> ( phi ` 1 ) e. ( 1 ... 1 ) )
3 1 2 ax-mp
 |-  ( phi ` 1 ) e. ( 1 ... 1 )
4 1z
 |-  1 e. ZZ
5 fzsn
 |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } )
6 4 5 ax-mp
 |-  ( 1 ... 1 ) = { 1 }
7 3 6 eleqtri
 |-  ( phi ` 1 ) e. { 1 }
8 elsni
 |-  ( ( phi ` 1 ) e. { 1 } -> ( phi ` 1 ) = 1 )
9 7 8 ax-mp
 |-  ( phi ` 1 ) = 1