| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfi |
|- ( 1 ... ( N - 1 ) ) e. Fin |
| 2 |
|
phibndlem |
|- ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) ) |
| 3 |
|
ssdomg |
|- ( ( 1 ... ( N - 1 ) ) e. Fin -> ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) ) |
| 4 |
1 2 3
|
mpsyl |
|- ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) |
| 5 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 6 |
|
ssrab2 |
|- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) |
| 7 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin ) |
| 8 |
5 6 7
|
mp2an |
|- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin |
| 9 |
|
hashdom |
|- ( ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin /\ ( 1 ... ( N - 1 ) ) e. Fin ) -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) ) |
| 10 |
8 1 9
|
mp2an |
|- ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... ( N - 1 ) ) ) |
| 11 |
4 10
|
sylibr |
|- ( N e. ( ZZ>= ` 2 ) -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... ( N - 1 ) ) ) ) |
| 12 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
| 13 |
|
phival |
|- ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 14 |
12 13
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 15 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 16 |
|
hashfz1 |
|- ( ( N - 1 ) e. NN0 -> ( # ` ( 1 ... ( N - 1 ) ) ) = ( N - 1 ) ) |
| 17 |
12 15 16
|
3syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( # ` ( 1 ... ( N - 1 ) ) ) = ( N - 1 ) ) |
| 18 |
17
|
eqcomd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) = ( # ` ( 1 ... ( N - 1 ) ) ) ) |
| 19 |
11 14 18
|
3brtr4d |
|- ( N e. ( ZZ>= ` 2 ) -> ( phi ` N ) <_ ( N - 1 ) ) |