Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
2 |
|
fzm1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( x e. ( 1 ... N ) <-> ( x e. ( 1 ... ( N - 1 ) ) \/ x = N ) ) ) |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
2 3
|
eleq2s |
|- ( N e. NN -> ( x e. ( 1 ... N ) <-> ( x e. ( 1 ... ( N - 1 ) ) \/ x = N ) ) ) |
5 |
4
|
biimpa |
|- ( ( N e. NN /\ x e. ( 1 ... N ) ) -> ( x e. ( 1 ... ( N - 1 ) ) \/ x = N ) ) |
6 |
5
|
ord |
|- ( ( N e. NN /\ x e. ( 1 ... N ) ) -> ( -. x e. ( 1 ... ( N - 1 ) ) -> x = N ) ) |
7 |
1 6
|
sylan |
|- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( -. x e. ( 1 ... ( N - 1 ) ) -> x = N ) ) |
8 |
|
eluzelz |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) |
9 |
|
gcdid |
|- ( N e. ZZ -> ( N gcd N ) = ( abs ` N ) ) |
10 |
8 9
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( N gcd N ) = ( abs ` N ) ) |
11 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
12 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
13 |
12
|
nn0ge0d |
|- ( N e. NN -> 0 <_ N ) |
14 |
11 13
|
absidd |
|- ( N e. NN -> ( abs ` N ) = N ) |
15 |
1 14
|
syl |
|- ( N e. ( ZZ>= ` 2 ) -> ( abs ` N ) = N ) |
16 |
10 15
|
eqtrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N gcd N ) = N ) |
17 |
|
1re |
|- 1 e. RR |
18 |
|
eluz2gt1 |
|- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
19 |
|
ltne |
|- ( ( 1 e. RR /\ 1 < N ) -> N =/= 1 ) |
20 |
17 18 19
|
sylancr |
|- ( N e. ( ZZ>= ` 2 ) -> N =/= 1 ) |
21 |
16 20
|
eqnetrd |
|- ( N e. ( ZZ>= ` 2 ) -> ( N gcd N ) =/= 1 ) |
22 |
|
oveq1 |
|- ( x = N -> ( x gcd N ) = ( N gcd N ) ) |
23 |
22
|
neeq1d |
|- ( x = N -> ( ( x gcd N ) =/= 1 <-> ( N gcd N ) =/= 1 ) ) |
24 |
21 23
|
syl5ibrcom |
|- ( N e. ( ZZ>= ` 2 ) -> ( x = N -> ( x gcd N ) =/= 1 ) ) |
25 |
24
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( x = N -> ( x gcd N ) =/= 1 ) ) |
26 |
7 25
|
syld |
|- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( -. x e. ( 1 ... ( N - 1 ) ) -> ( x gcd N ) =/= 1 ) ) |
27 |
26
|
necon4bd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ x e. ( 1 ... N ) ) -> ( ( x gcd N ) = 1 -> x e. ( 1 ... ( N - 1 ) ) ) ) |
28 |
27
|
ralrimiva |
|- ( N e. ( ZZ>= ` 2 ) -> A. x e. ( 1 ... N ) ( ( x gcd N ) = 1 -> x e. ( 1 ... ( N - 1 ) ) ) ) |
29 |
|
rabss |
|- ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) <-> A. x e. ( 1 ... N ) ( ( x gcd N ) = 1 -> x e. ( 1 ... ( N - 1 ) ) ) ) |
30 |
28 29
|
sylibr |
|- ( N e. ( ZZ>= ` 2 ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... ( N - 1 ) ) ) |