| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phival |
|- ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 2 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 3 |
|
ssrab2 |
|- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) |
| 4 |
|
ssfi |
|- ( ( ( 1 ... N ) e. Fin /\ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin ) |
| 5 |
2 3 4
|
mp2an |
|- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin |
| 6 |
|
hashcl |
|- ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. NN0 ) |
| 7 |
5 6
|
ax-mp |
|- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. NN0 |
| 8 |
7
|
nn0zi |
|- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ |
| 9 |
8
|
a1i |
|- ( N e. NN -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ ) |
| 10 |
|
1z |
|- 1 e. ZZ |
| 11 |
|
hashsng |
|- ( 1 e. ZZ -> ( # ` { 1 } ) = 1 ) |
| 12 |
10 11
|
ax-mp |
|- ( # ` { 1 } ) = 1 |
| 13 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 14 |
13
|
rabex |
|- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. _V |
| 15 |
|
oveq1 |
|- ( x = 1 -> ( x gcd N ) = ( 1 gcd N ) ) |
| 16 |
15
|
eqeq1d |
|- ( x = 1 -> ( ( x gcd N ) = 1 <-> ( 1 gcd N ) = 1 ) ) |
| 17 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
| 18 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 19 |
17 18
|
eleq2s |
|- ( N e. NN -> 1 e. ( 1 ... N ) ) |
| 20 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 21 |
|
1gcd |
|- ( N e. ZZ -> ( 1 gcd N ) = 1 ) |
| 22 |
20 21
|
syl |
|- ( N e. NN -> ( 1 gcd N ) = 1 ) |
| 23 |
16 19 22
|
elrabd |
|- ( N e. NN -> 1 e. { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 24 |
23
|
snssd |
|- ( N e. NN -> { 1 } C_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 25 |
|
ssdomg |
|- ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. _V -> ( { 1 } C_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } -> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 26 |
14 24 25
|
mpsyl |
|- ( N e. NN -> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 27 |
|
snfi |
|- { 1 } e. Fin |
| 28 |
|
hashdom |
|- ( ( { 1 } e. Fin /\ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin ) -> ( ( # ` { 1 } ) <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <-> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 29 |
27 5 28
|
mp2an |
|- ( ( # ` { 1 } ) <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <-> { 1 } ~<_ { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 30 |
26 29
|
sylibr |
|- ( N e. NN -> ( # ` { 1 } ) <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 31 |
12 30
|
eqbrtrrid |
|- ( N e. NN -> 1 <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 32 |
|
ssdomg |
|- ( ( 1 ... N ) e. _V -> ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } C_ ( 1 ... N ) -> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) ) ) |
| 33 |
13 3 32
|
mp2 |
|- { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) |
| 34 |
|
hashdom |
|- ( ( { x e. ( 1 ... N ) | ( x gcd N ) = 1 } e. Fin /\ ( 1 ... N ) e. Fin ) -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... N ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) ) ) |
| 35 |
5 2 34
|
mp2an |
|- ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... N ) ) <-> { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ~<_ ( 1 ... N ) ) |
| 36 |
33 35
|
mpbir |
|- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ ( # ` ( 1 ... N ) ) |
| 37 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 38 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
| 39 |
37 38
|
syl |
|- ( N e. NN -> ( # ` ( 1 ... N ) ) = N ) |
| 40 |
36 39
|
breqtrid |
|- ( N e. NN -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ N ) |
| 41 |
|
elfz1 |
|- ( ( 1 e. ZZ /\ N e. ZZ ) -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ( 1 ... N ) <-> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ /\ 1 <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) /\ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ N ) ) ) |
| 42 |
10 20 41
|
sylancr |
|- ( N e. NN -> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ( 1 ... N ) <-> ( ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ZZ /\ 1 <_ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) /\ ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) <_ N ) ) ) |
| 43 |
9 31 40 42
|
mpbir3and |
|- ( N e. NN -> ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. ( 1 ... N ) ) |
| 44 |
1 43
|
eqeltrd |
|- ( N e. NN -> ( phi ` N ) e. ( 1 ... N ) ) |