Metamath Proof Explorer


Theorem phicld

Description: Closure for the value of the Euler phi function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypothesis phicld.1
|- ( ph -> N e. NN )
Assertion phicld
|- ( ph -> ( phi ` N ) e. NN )

Proof

Step Hyp Ref Expression
1 phicld.1
 |-  ( ph -> N e. NN )
2 phicl
 |-  ( N e. NN -> ( phi ` N ) e. NN )
3 1 2 syl
 |-  ( ph -> ( phi ` N ) e. NN )