Metamath Proof Explorer


Theorem phimul

Description: The Euler phi function is a multiplicative function, meaning that it distributes over multiplication at relatively prime arguments. Theorem 2.5(c) in ApostolNT p. 28. (Contributed by Mario Carneiro, 24-Feb-2014)

Ref Expression
Assertion phimul
|- ( ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( phi ` ( M x. N ) ) = ( ( phi ` M ) x. ( phi ` N ) ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( 0 ..^ ( M x. N ) ) = ( 0 ..^ ( M x. N ) )
2 eqid
 |-  ( ( 0 ..^ M ) X. ( 0 ..^ N ) ) = ( ( 0 ..^ M ) X. ( 0 ..^ N ) )
3 eqid
 |-  ( x e. ( 0 ..^ ( M x. N ) ) |-> <. ( x mod M ) , ( x mod N ) >. ) = ( x e. ( 0 ..^ ( M x. N ) ) |-> <. ( x mod M ) , ( x mod N ) >. )
4 id
 |-  ( ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) )
5 eqid
 |-  { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } = { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 }
6 eqid
 |-  { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 }
7 eqid
 |-  { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 } = { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 }
8 1 2 3 4 5 6 7 phimullem
 |-  ( ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) -> ( phi ` ( M x. N ) ) = ( ( phi ` M ) x. ( phi ` N ) ) )