| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crth.1 |
|- S = ( 0 ..^ ( M x. N ) ) |
| 2 |
|
crth.2 |
|- T = ( ( 0 ..^ M ) X. ( 0 ..^ N ) ) |
| 3 |
|
crth.3 |
|- F = ( x e. S |-> <. ( x mod M ) , ( x mod N ) >. ) |
| 4 |
|
crth.4 |
|- ( ph -> ( M e. NN /\ N e. NN /\ ( M gcd N ) = 1 ) ) |
| 5 |
|
phimul.4 |
|- U = { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } |
| 6 |
|
phimul.5 |
|- V = { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } |
| 7 |
|
phimul.6 |
|- W = { y e. S | ( y gcd ( M x. N ) ) = 1 } |
| 8 |
|
oveq1 |
|- ( y = w -> ( y gcd ( M x. N ) ) = ( w gcd ( M x. N ) ) ) |
| 9 |
8
|
eqeq1d |
|- ( y = w -> ( ( y gcd ( M x. N ) ) = 1 <-> ( w gcd ( M x. N ) ) = 1 ) ) |
| 10 |
9 7
|
elrab2 |
|- ( w e. W <-> ( w e. S /\ ( w gcd ( M x. N ) ) = 1 ) ) |
| 11 |
10
|
simplbi |
|- ( w e. W -> w e. S ) |
| 12 |
|
oveq1 |
|- ( x = w -> ( x mod M ) = ( w mod M ) ) |
| 13 |
|
oveq1 |
|- ( x = w -> ( x mod N ) = ( w mod N ) ) |
| 14 |
12 13
|
opeq12d |
|- ( x = w -> <. ( x mod M ) , ( x mod N ) >. = <. ( w mod M ) , ( w mod N ) >. ) |
| 15 |
|
opex |
|- <. ( w mod M ) , ( w mod N ) >. e. _V |
| 16 |
14 3 15
|
fvmpt |
|- ( w e. S -> ( F ` w ) = <. ( w mod M ) , ( w mod N ) >. ) |
| 17 |
11 16
|
syl |
|- ( w e. W -> ( F ` w ) = <. ( w mod M ) , ( w mod N ) >. ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ w e. W ) -> ( F ` w ) = <. ( w mod M ) , ( w mod N ) >. ) |
| 19 |
11 1
|
eleqtrdi |
|- ( w e. W -> w e. ( 0 ..^ ( M x. N ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ w e. W ) -> w e. ( 0 ..^ ( M x. N ) ) ) |
| 21 |
|
elfzoelz |
|- ( w e. ( 0 ..^ ( M x. N ) ) -> w e. ZZ ) |
| 22 |
20 21
|
syl |
|- ( ( ph /\ w e. W ) -> w e. ZZ ) |
| 23 |
4
|
simp1d |
|- ( ph -> M e. NN ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ w e. W ) -> M e. NN ) |
| 25 |
|
zmodfzo |
|- ( ( w e. ZZ /\ M e. NN ) -> ( w mod M ) e. ( 0 ..^ M ) ) |
| 26 |
22 24 25
|
syl2anc |
|- ( ( ph /\ w e. W ) -> ( w mod M ) e. ( 0 ..^ M ) ) |
| 27 |
|
modgcd |
|- ( ( w e. ZZ /\ M e. NN ) -> ( ( w mod M ) gcd M ) = ( w gcd M ) ) |
| 28 |
22 24 27
|
syl2anc |
|- ( ( ph /\ w e. W ) -> ( ( w mod M ) gcd M ) = ( w gcd M ) ) |
| 29 |
24
|
nnzd |
|- ( ( ph /\ w e. W ) -> M e. ZZ ) |
| 30 |
|
gcddvds |
|- ( ( w e. ZZ /\ M e. ZZ ) -> ( ( w gcd M ) || w /\ ( w gcd M ) || M ) ) |
| 31 |
22 29 30
|
syl2anc |
|- ( ( ph /\ w e. W ) -> ( ( w gcd M ) || w /\ ( w gcd M ) || M ) ) |
| 32 |
31
|
simpld |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) || w ) |
| 33 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
| 34 |
|
simpr |
|- ( ( w = 0 /\ M = 0 ) -> M = 0 ) |
| 35 |
34
|
necon3ai |
|- ( M =/= 0 -> -. ( w = 0 /\ M = 0 ) ) |
| 36 |
24 33 35
|
3syl |
|- ( ( ph /\ w e. W ) -> -. ( w = 0 /\ M = 0 ) ) |
| 37 |
|
gcdn0cl |
|- ( ( ( w e. ZZ /\ M e. ZZ ) /\ -. ( w = 0 /\ M = 0 ) ) -> ( w gcd M ) e. NN ) |
| 38 |
22 29 36 37
|
syl21anc |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) e. NN ) |
| 39 |
38
|
nnzd |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) e. ZZ ) |
| 40 |
4
|
simp2d |
|- ( ph -> N e. NN ) |
| 41 |
40
|
adantr |
|- ( ( ph /\ w e. W ) -> N e. NN ) |
| 42 |
41
|
nnzd |
|- ( ( ph /\ w e. W ) -> N e. ZZ ) |
| 43 |
31
|
simprd |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) || M ) |
| 44 |
39 29 42 43
|
dvdsmultr1d |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) || ( M x. N ) ) |
| 45 |
24 41
|
nnmulcld |
|- ( ( ph /\ w e. W ) -> ( M x. N ) e. NN ) |
| 46 |
45
|
nnzd |
|- ( ( ph /\ w e. W ) -> ( M x. N ) e. ZZ ) |
| 47 |
|
nnne0 |
|- ( ( M x. N ) e. NN -> ( M x. N ) =/= 0 ) |
| 48 |
|
simpr |
|- ( ( w = 0 /\ ( M x. N ) = 0 ) -> ( M x. N ) = 0 ) |
| 49 |
48
|
necon3ai |
|- ( ( M x. N ) =/= 0 -> -. ( w = 0 /\ ( M x. N ) = 0 ) ) |
| 50 |
45 47 49
|
3syl |
|- ( ( ph /\ w e. W ) -> -. ( w = 0 /\ ( M x. N ) = 0 ) ) |
| 51 |
|
dvdslegcd |
|- ( ( ( ( w gcd M ) e. ZZ /\ w e. ZZ /\ ( M x. N ) e. ZZ ) /\ -. ( w = 0 /\ ( M x. N ) = 0 ) ) -> ( ( ( w gcd M ) || w /\ ( w gcd M ) || ( M x. N ) ) -> ( w gcd M ) <_ ( w gcd ( M x. N ) ) ) ) |
| 52 |
39 22 46 50 51
|
syl31anc |
|- ( ( ph /\ w e. W ) -> ( ( ( w gcd M ) || w /\ ( w gcd M ) || ( M x. N ) ) -> ( w gcd M ) <_ ( w gcd ( M x. N ) ) ) ) |
| 53 |
32 44 52
|
mp2and |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) <_ ( w gcd ( M x. N ) ) ) |
| 54 |
10
|
simprbi |
|- ( w e. W -> ( w gcd ( M x. N ) ) = 1 ) |
| 55 |
54
|
adantl |
|- ( ( ph /\ w e. W ) -> ( w gcd ( M x. N ) ) = 1 ) |
| 56 |
53 55
|
breqtrd |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) <_ 1 ) |
| 57 |
|
nnle1eq1 |
|- ( ( w gcd M ) e. NN -> ( ( w gcd M ) <_ 1 <-> ( w gcd M ) = 1 ) ) |
| 58 |
38 57
|
syl |
|- ( ( ph /\ w e. W ) -> ( ( w gcd M ) <_ 1 <-> ( w gcd M ) = 1 ) ) |
| 59 |
56 58
|
mpbid |
|- ( ( ph /\ w e. W ) -> ( w gcd M ) = 1 ) |
| 60 |
28 59
|
eqtrd |
|- ( ( ph /\ w e. W ) -> ( ( w mod M ) gcd M ) = 1 ) |
| 61 |
|
oveq1 |
|- ( y = ( w mod M ) -> ( y gcd M ) = ( ( w mod M ) gcd M ) ) |
| 62 |
61
|
eqeq1d |
|- ( y = ( w mod M ) -> ( ( y gcd M ) = 1 <-> ( ( w mod M ) gcd M ) = 1 ) ) |
| 63 |
62 5
|
elrab2 |
|- ( ( w mod M ) e. U <-> ( ( w mod M ) e. ( 0 ..^ M ) /\ ( ( w mod M ) gcd M ) = 1 ) ) |
| 64 |
26 60 63
|
sylanbrc |
|- ( ( ph /\ w e. W ) -> ( w mod M ) e. U ) |
| 65 |
|
zmodfzo |
|- ( ( w e. ZZ /\ N e. NN ) -> ( w mod N ) e. ( 0 ..^ N ) ) |
| 66 |
22 41 65
|
syl2anc |
|- ( ( ph /\ w e. W ) -> ( w mod N ) e. ( 0 ..^ N ) ) |
| 67 |
|
modgcd |
|- ( ( w e. ZZ /\ N e. NN ) -> ( ( w mod N ) gcd N ) = ( w gcd N ) ) |
| 68 |
22 41 67
|
syl2anc |
|- ( ( ph /\ w e. W ) -> ( ( w mod N ) gcd N ) = ( w gcd N ) ) |
| 69 |
|
gcddvds |
|- ( ( w e. ZZ /\ N e. ZZ ) -> ( ( w gcd N ) || w /\ ( w gcd N ) || N ) ) |
| 70 |
22 42 69
|
syl2anc |
|- ( ( ph /\ w e. W ) -> ( ( w gcd N ) || w /\ ( w gcd N ) || N ) ) |
| 71 |
70
|
simpld |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) || w ) |
| 72 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 73 |
|
simpr |
|- ( ( w = 0 /\ N = 0 ) -> N = 0 ) |
| 74 |
73
|
necon3ai |
|- ( N =/= 0 -> -. ( w = 0 /\ N = 0 ) ) |
| 75 |
41 72 74
|
3syl |
|- ( ( ph /\ w e. W ) -> -. ( w = 0 /\ N = 0 ) ) |
| 76 |
|
gcdn0cl |
|- ( ( ( w e. ZZ /\ N e. ZZ ) /\ -. ( w = 0 /\ N = 0 ) ) -> ( w gcd N ) e. NN ) |
| 77 |
22 42 75 76
|
syl21anc |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) e. NN ) |
| 78 |
77
|
nnzd |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) e. ZZ ) |
| 79 |
70
|
simprd |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) || N ) |
| 80 |
|
dvdsmul2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M x. N ) ) |
| 81 |
29 42 80
|
syl2anc |
|- ( ( ph /\ w e. W ) -> N || ( M x. N ) ) |
| 82 |
78 42 46 79 81
|
dvdstrd |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) || ( M x. N ) ) |
| 83 |
|
dvdslegcd |
|- ( ( ( ( w gcd N ) e. ZZ /\ w e. ZZ /\ ( M x. N ) e. ZZ ) /\ -. ( w = 0 /\ ( M x. N ) = 0 ) ) -> ( ( ( w gcd N ) || w /\ ( w gcd N ) || ( M x. N ) ) -> ( w gcd N ) <_ ( w gcd ( M x. N ) ) ) ) |
| 84 |
78 22 46 50 83
|
syl31anc |
|- ( ( ph /\ w e. W ) -> ( ( ( w gcd N ) || w /\ ( w gcd N ) || ( M x. N ) ) -> ( w gcd N ) <_ ( w gcd ( M x. N ) ) ) ) |
| 85 |
71 82 84
|
mp2and |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) <_ ( w gcd ( M x. N ) ) ) |
| 86 |
85 55
|
breqtrd |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) <_ 1 ) |
| 87 |
|
nnle1eq1 |
|- ( ( w gcd N ) e. NN -> ( ( w gcd N ) <_ 1 <-> ( w gcd N ) = 1 ) ) |
| 88 |
77 87
|
syl |
|- ( ( ph /\ w e. W ) -> ( ( w gcd N ) <_ 1 <-> ( w gcd N ) = 1 ) ) |
| 89 |
86 88
|
mpbid |
|- ( ( ph /\ w e. W ) -> ( w gcd N ) = 1 ) |
| 90 |
68 89
|
eqtrd |
|- ( ( ph /\ w e. W ) -> ( ( w mod N ) gcd N ) = 1 ) |
| 91 |
|
oveq1 |
|- ( y = ( w mod N ) -> ( y gcd N ) = ( ( w mod N ) gcd N ) ) |
| 92 |
91
|
eqeq1d |
|- ( y = ( w mod N ) -> ( ( y gcd N ) = 1 <-> ( ( w mod N ) gcd N ) = 1 ) ) |
| 93 |
92 6
|
elrab2 |
|- ( ( w mod N ) e. V <-> ( ( w mod N ) e. ( 0 ..^ N ) /\ ( ( w mod N ) gcd N ) = 1 ) ) |
| 94 |
66 90 93
|
sylanbrc |
|- ( ( ph /\ w e. W ) -> ( w mod N ) e. V ) |
| 95 |
64 94
|
opelxpd |
|- ( ( ph /\ w e. W ) -> <. ( w mod M ) , ( w mod N ) >. e. ( U X. V ) ) |
| 96 |
18 95
|
eqeltrd |
|- ( ( ph /\ w e. W ) -> ( F ` w ) e. ( U X. V ) ) |
| 97 |
96
|
ralrimiva |
|- ( ph -> A. w e. W ( F ` w ) e. ( U X. V ) ) |
| 98 |
1 2 3 4
|
crth |
|- ( ph -> F : S -1-1-onto-> T ) |
| 99 |
|
f1ofn |
|- ( F : S -1-1-onto-> T -> F Fn S ) |
| 100 |
|
fnfun |
|- ( F Fn S -> Fun F ) |
| 101 |
98 99 100
|
3syl |
|- ( ph -> Fun F ) |
| 102 |
7
|
ssrab3 |
|- W C_ S |
| 103 |
|
fndm |
|- ( F Fn S -> dom F = S ) |
| 104 |
98 99 103
|
3syl |
|- ( ph -> dom F = S ) |
| 105 |
102 104
|
sseqtrrid |
|- ( ph -> W C_ dom F ) |
| 106 |
|
funimass4 |
|- ( ( Fun F /\ W C_ dom F ) -> ( ( F " W ) C_ ( U X. V ) <-> A. w e. W ( F ` w ) e. ( U X. V ) ) ) |
| 107 |
101 105 106
|
syl2anc |
|- ( ph -> ( ( F " W ) C_ ( U X. V ) <-> A. w e. W ( F ` w ) e. ( U X. V ) ) ) |
| 108 |
97 107
|
mpbird |
|- ( ph -> ( F " W ) C_ ( U X. V ) ) |
| 109 |
5
|
ssrab3 |
|- U C_ ( 0 ..^ M ) |
| 110 |
6
|
ssrab3 |
|- V C_ ( 0 ..^ N ) |
| 111 |
|
xpss12 |
|- ( ( U C_ ( 0 ..^ M ) /\ V C_ ( 0 ..^ N ) ) -> ( U X. V ) C_ ( ( 0 ..^ M ) X. ( 0 ..^ N ) ) ) |
| 112 |
109 110 111
|
mp2an |
|- ( U X. V ) C_ ( ( 0 ..^ M ) X. ( 0 ..^ N ) ) |
| 113 |
112 2
|
sseqtrri |
|- ( U X. V ) C_ T |
| 114 |
113
|
sseli |
|- ( z e. ( U X. V ) -> z e. T ) |
| 115 |
|
f1ocnvfv2 |
|- ( ( F : S -1-1-onto-> T /\ z e. T ) -> ( F ` ( `' F ` z ) ) = z ) |
| 116 |
98 114 115
|
syl2an |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( F ` ( `' F ` z ) ) = z ) |
| 117 |
|
f1ocnv |
|- ( F : S -1-1-onto-> T -> `' F : T -1-1-onto-> S ) |
| 118 |
|
f1of |
|- ( `' F : T -1-1-onto-> S -> `' F : T --> S ) |
| 119 |
98 117 118
|
3syl |
|- ( ph -> `' F : T --> S ) |
| 120 |
|
ffvelcdm |
|- ( ( `' F : T --> S /\ z e. T ) -> ( `' F ` z ) e. S ) |
| 121 |
119 114 120
|
syl2an |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( `' F ` z ) e. S ) |
| 122 |
121 1
|
eleqtrdi |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( `' F ` z ) e. ( 0 ..^ ( M x. N ) ) ) |
| 123 |
|
elfzoelz |
|- ( ( `' F ` z ) e. ( 0 ..^ ( M x. N ) ) -> ( `' F ` z ) e. ZZ ) |
| 124 |
122 123
|
syl |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( `' F ` z ) e. ZZ ) |
| 125 |
23
|
adantr |
|- ( ( ph /\ z e. ( U X. V ) ) -> M e. NN ) |
| 126 |
|
modgcd |
|- ( ( ( `' F ` z ) e. ZZ /\ M e. NN ) -> ( ( ( `' F ` z ) mod M ) gcd M ) = ( ( `' F ` z ) gcd M ) ) |
| 127 |
124 125 126
|
syl2anc |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( `' F ` z ) mod M ) gcd M ) = ( ( `' F ` z ) gcd M ) ) |
| 128 |
|
oveq1 |
|- ( w = ( `' F ` z ) -> ( w mod M ) = ( ( `' F ` z ) mod M ) ) |
| 129 |
|
oveq1 |
|- ( w = ( `' F ` z ) -> ( w mod N ) = ( ( `' F ` z ) mod N ) ) |
| 130 |
128 129
|
opeq12d |
|- ( w = ( `' F ` z ) -> <. ( w mod M ) , ( w mod N ) >. = <. ( ( `' F ` z ) mod M ) , ( ( `' F ` z ) mod N ) >. ) |
| 131 |
14
|
cbvmptv |
|- ( x e. S |-> <. ( x mod M ) , ( x mod N ) >. ) = ( w e. S |-> <. ( w mod M ) , ( w mod N ) >. ) |
| 132 |
3 131
|
eqtri |
|- F = ( w e. S |-> <. ( w mod M ) , ( w mod N ) >. ) |
| 133 |
|
opex |
|- <. ( ( `' F ` z ) mod M ) , ( ( `' F ` z ) mod N ) >. e. _V |
| 134 |
130 132 133
|
fvmpt |
|- ( ( `' F ` z ) e. S -> ( F ` ( `' F ` z ) ) = <. ( ( `' F ` z ) mod M ) , ( ( `' F ` z ) mod N ) >. ) |
| 135 |
121 134
|
syl |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( F ` ( `' F ` z ) ) = <. ( ( `' F ` z ) mod M ) , ( ( `' F ` z ) mod N ) >. ) |
| 136 |
116 135
|
eqtr3d |
|- ( ( ph /\ z e. ( U X. V ) ) -> z = <. ( ( `' F ` z ) mod M ) , ( ( `' F ` z ) mod N ) >. ) |
| 137 |
|
simpr |
|- ( ( ph /\ z e. ( U X. V ) ) -> z e. ( U X. V ) ) |
| 138 |
136 137
|
eqeltrrd |
|- ( ( ph /\ z e. ( U X. V ) ) -> <. ( ( `' F ` z ) mod M ) , ( ( `' F ` z ) mod N ) >. e. ( U X. V ) ) |
| 139 |
|
opelxp |
|- ( <. ( ( `' F ` z ) mod M ) , ( ( `' F ` z ) mod N ) >. e. ( U X. V ) <-> ( ( ( `' F ` z ) mod M ) e. U /\ ( ( `' F ` z ) mod N ) e. V ) ) |
| 140 |
138 139
|
sylib |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( `' F ` z ) mod M ) e. U /\ ( ( `' F ` z ) mod N ) e. V ) ) |
| 141 |
140
|
simpld |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( `' F ` z ) mod M ) e. U ) |
| 142 |
|
oveq1 |
|- ( y = ( ( `' F ` z ) mod M ) -> ( y gcd M ) = ( ( ( `' F ` z ) mod M ) gcd M ) ) |
| 143 |
142
|
eqeq1d |
|- ( y = ( ( `' F ` z ) mod M ) -> ( ( y gcd M ) = 1 <-> ( ( ( `' F ` z ) mod M ) gcd M ) = 1 ) ) |
| 144 |
143 5
|
elrab2 |
|- ( ( ( `' F ` z ) mod M ) e. U <-> ( ( ( `' F ` z ) mod M ) e. ( 0 ..^ M ) /\ ( ( ( `' F ` z ) mod M ) gcd M ) = 1 ) ) |
| 145 |
141 144
|
sylib |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( `' F ` z ) mod M ) e. ( 0 ..^ M ) /\ ( ( ( `' F ` z ) mod M ) gcd M ) = 1 ) ) |
| 146 |
145
|
simprd |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( `' F ` z ) mod M ) gcd M ) = 1 ) |
| 147 |
127 146
|
eqtr3d |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( `' F ` z ) gcd M ) = 1 ) |
| 148 |
40
|
adantr |
|- ( ( ph /\ z e. ( U X. V ) ) -> N e. NN ) |
| 149 |
|
modgcd |
|- ( ( ( `' F ` z ) e. ZZ /\ N e. NN ) -> ( ( ( `' F ` z ) mod N ) gcd N ) = ( ( `' F ` z ) gcd N ) ) |
| 150 |
124 148 149
|
syl2anc |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( `' F ` z ) mod N ) gcd N ) = ( ( `' F ` z ) gcd N ) ) |
| 151 |
140
|
simprd |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( `' F ` z ) mod N ) e. V ) |
| 152 |
|
oveq1 |
|- ( y = ( ( `' F ` z ) mod N ) -> ( y gcd N ) = ( ( ( `' F ` z ) mod N ) gcd N ) ) |
| 153 |
152
|
eqeq1d |
|- ( y = ( ( `' F ` z ) mod N ) -> ( ( y gcd N ) = 1 <-> ( ( ( `' F ` z ) mod N ) gcd N ) = 1 ) ) |
| 154 |
153 6
|
elrab2 |
|- ( ( ( `' F ` z ) mod N ) e. V <-> ( ( ( `' F ` z ) mod N ) e. ( 0 ..^ N ) /\ ( ( ( `' F ` z ) mod N ) gcd N ) = 1 ) ) |
| 155 |
151 154
|
sylib |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( `' F ` z ) mod N ) e. ( 0 ..^ N ) /\ ( ( ( `' F ` z ) mod N ) gcd N ) = 1 ) ) |
| 156 |
155
|
simprd |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( `' F ` z ) mod N ) gcd N ) = 1 ) |
| 157 |
150 156
|
eqtr3d |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( `' F ` z ) gcd N ) = 1 ) |
| 158 |
23
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ z e. ( U X. V ) ) -> M e. ZZ ) |
| 160 |
40
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 161 |
160
|
adantr |
|- ( ( ph /\ z e. ( U X. V ) ) -> N e. ZZ ) |
| 162 |
|
rpmul |
|- ( ( ( `' F ` z ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( ( `' F ` z ) gcd M ) = 1 /\ ( ( `' F ` z ) gcd N ) = 1 ) -> ( ( `' F ` z ) gcd ( M x. N ) ) = 1 ) ) |
| 163 |
124 159 161 162
|
syl3anc |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( ( ( `' F ` z ) gcd M ) = 1 /\ ( ( `' F ` z ) gcd N ) = 1 ) -> ( ( `' F ` z ) gcd ( M x. N ) ) = 1 ) ) |
| 164 |
147 157 163
|
mp2and |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( ( `' F ` z ) gcd ( M x. N ) ) = 1 ) |
| 165 |
|
oveq1 |
|- ( y = ( `' F ` z ) -> ( y gcd ( M x. N ) ) = ( ( `' F ` z ) gcd ( M x. N ) ) ) |
| 166 |
165
|
eqeq1d |
|- ( y = ( `' F ` z ) -> ( ( y gcd ( M x. N ) ) = 1 <-> ( ( `' F ` z ) gcd ( M x. N ) ) = 1 ) ) |
| 167 |
166 7
|
elrab2 |
|- ( ( `' F ` z ) e. W <-> ( ( `' F ` z ) e. S /\ ( ( `' F ` z ) gcd ( M x. N ) ) = 1 ) ) |
| 168 |
121 164 167
|
sylanbrc |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( `' F ` z ) e. W ) |
| 169 |
|
funfvima2 |
|- ( ( Fun F /\ W C_ dom F ) -> ( ( `' F ` z ) e. W -> ( F ` ( `' F ` z ) ) e. ( F " W ) ) ) |
| 170 |
101 105 169
|
syl2anc |
|- ( ph -> ( ( `' F ` z ) e. W -> ( F ` ( `' F ` z ) ) e. ( F " W ) ) ) |
| 171 |
170
|
imp |
|- ( ( ph /\ ( `' F ` z ) e. W ) -> ( F ` ( `' F ` z ) ) e. ( F " W ) ) |
| 172 |
168 171
|
syldan |
|- ( ( ph /\ z e. ( U X. V ) ) -> ( F ` ( `' F ` z ) ) e. ( F " W ) ) |
| 173 |
116 172
|
eqeltrrd |
|- ( ( ph /\ z e. ( U X. V ) ) -> z e. ( F " W ) ) |
| 174 |
108 173
|
eqelssd |
|- ( ph -> ( F " W ) = ( U X. V ) ) |
| 175 |
|
f1of1 |
|- ( F : S -1-1-onto-> T -> F : S -1-1-> T ) |
| 176 |
98 175
|
syl |
|- ( ph -> F : S -1-1-> T ) |
| 177 |
|
fzofi |
|- ( 0 ..^ ( M x. N ) ) e. Fin |
| 178 |
1 177
|
eqeltri |
|- S e. Fin |
| 179 |
|
ssfi |
|- ( ( S e. Fin /\ W C_ S ) -> W e. Fin ) |
| 180 |
178 102 179
|
mp2an |
|- W e. Fin |
| 181 |
180
|
elexi |
|- W e. _V |
| 182 |
181
|
f1imaen |
|- ( ( F : S -1-1-> T /\ W C_ S ) -> ( F " W ) ~~ W ) |
| 183 |
176 102 182
|
sylancl |
|- ( ph -> ( F " W ) ~~ W ) |
| 184 |
174 183
|
eqbrtrrd |
|- ( ph -> ( U X. V ) ~~ W ) |
| 185 |
|
fzofi |
|- ( 0 ..^ M ) e. Fin |
| 186 |
|
ssrab2 |
|- { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } C_ ( 0 ..^ M ) |
| 187 |
|
ssfi |
|- ( ( ( 0 ..^ M ) e. Fin /\ { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } C_ ( 0 ..^ M ) ) -> { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } e. Fin ) |
| 188 |
185 186 187
|
mp2an |
|- { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } e. Fin |
| 189 |
5 188
|
eqeltri |
|- U e. Fin |
| 190 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 191 |
|
ssrab2 |
|- { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } C_ ( 0 ..^ N ) |
| 192 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } C_ ( 0 ..^ N ) ) -> { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } e. Fin ) |
| 193 |
190 191 192
|
mp2an |
|- { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } e. Fin |
| 194 |
6 193
|
eqeltri |
|- V e. Fin |
| 195 |
|
xpfi |
|- ( ( U e. Fin /\ V e. Fin ) -> ( U X. V ) e. Fin ) |
| 196 |
189 194 195
|
mp2an |
|- ( U X. V ) e. Fin |
| 197 |
|
hashen |
|- ( ( ( U X. V ) e. Fin /\ W e. Fin ) -> ( ( # ` ( U X. V ) ) = ( # ` W ) <-> ( U X. V ) ~~ W ) ) |
| 198 |
196 180 197
|
mp2an |
|- ( ( # ` ( U X. V ) ) = ( # ` W ) <-> ( U X. V ) ~~ W ) |
| 199 |
184 198
|
sylibr |
|- ( ph -> ( # ` ( U X. V ) ) = ( # ` W ) ) |
| 200 |
|
hashxp |
|- ( ( U e. Fin /\ V e. Fin ) -> ( # ` ( U X. V ) ) = ( ( # ` U ) x. ( # ` V ) ) ) |
| 201 |
189 194 200
|
mp2an |
|- ( # ` ( U X. V ) ) = ( ( # ` U ) x. ( # ` V ) ) |
| 202 |
199 201
|
eqtr3di |
|- ( ph -> ( # ` W ) = ( ( # ` U ) x. ( # ` V ) ) ) |
| 203 |
23 40
|
nnmulcld |
|- ( ph -> ( M x. N ) e. NN ) |
| 204 |
|
dfphi2 |
|- ( ( M x. N ) e. NN -> ( phi ` ( M x. N ) ) = ( # ` { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 } ) ) |
| 205 |
1
|
rabeqi |
|- { y e. S | ( y gcd ( M x. N ) ) = 1 } = { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 } |
| 206 |
7 205
|
eqtri |
|- W = { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 } |
| 207 |
206
|
fveq2i |
|- ( # ` W ) = ( # ` { y e. ( 0 ..^ ( M x. N ) ) | ( y gcd ( M x. N ) ) = 1 } ) |
| 208 |
204 207
|
eqtr4di |
|- ( ( M x. N ) e. NN -> ( phi ` ( M x. N ) ) = ( # ` W ) ) |
| 209 |
203 208
|
syl |
|- ( ph -> ( phi ` ( M x. N ) ) = ( # ` W ) ) |
| 210 |
|
dfphi2 |
|- ( M e. NN -> ( phi ` M ) = ( # ` { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } ) ) |
| 211 |
5
|
fveq2i |
|- ( # ` U ) = ( # ` { y e. ( 0 ..^ M ) | ( y gcd M ) = 1 } ) |
| 212 |
210 211
|
eqtr4di |
|- ( M e. NN -> ( phi ` M ) = ( # ` U ) ) |
| 213 |
23 212
|
syl |
|- ( ph -> ( phi ` M ) = ( # ` U ) ) |
| 214 |
|
dfphi2 |
|- ( N e. NN -> ( phi ` N ) = ( # ` { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } ) ) |
| 215 |
6
|
fveq2i |
|- ( # ` V ) = ( # ` { y e. ( 0 ..^ N ) | ( y gcd N ) = 1 } ) |
| 216 |
214 215
|
eqtr4di |
|- ( N e. NN -> ( phi ` N ) = ( # ` V ) ) |
| 217 |
40 216
|
syl |
|- ( ph -> ( phi ` N ) = ( # ` V ) ) |
| 218 |
213 217
|
oveq12d |
|- ( ph -> ( ( phi ` M ) x. ( phi ` N ) ) = ( ( # ` U ) x. ( # ` V ) ) ) |
| 219 |
202 209 218
|
3eqtr4d |
|- ( ph -> ( phi ` ( M x. N ) ) = ( ( phi ` M ) x. ( phi ` N ) ) ) |