| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|- 1 e. NN |
| 2 |
|
phiprmpw |
|- ( ( P e. Prime /\ 1 e. NN ) -> ( phi ` ( P ^ 1 ) ) = ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( P e. Prime -> ( phi ` ( P ^ 1 ) ) = ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) ) |
| 4 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 5 |
4
|
zcnd |
|- ( P e. Prime -> P e. CC ) |
| 6 |
5
|
exp1d |
|- ( P e. Prime -> ( P ^ 1 ) = P ) |
| 7 |
6
|
fveq2d |
|- ( P e. Prime -> ( phi ` ( P ^ 1 ) ) = ( phi ` P ) ) |
| 8 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 9 |
8
|
oveq2i |
|- ( P ^ ( 1 - 1 ) ) = ( P ^ 0 ) |
| 10 |
5
|
exp0d |
|- ( P e. Prime -> ( P ^ 0 ) = 1 ) |
| 11 |
9 10
|
eqtrid |
|- ( P e. Prime -> ( P ^ ( 1 - 1 ) ) = 1 ) |
| 12 |
11
|
oveq1d |
|- ( P e. Prime -> ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) = ( 1 x. ( P - 1 ) ) ) |
| 13 |
|
ax-1cn |
|- 1 e. CC |
| 14 |
|
subcl |
|- ( ( P e. CC /\ 1 e. CC ) -> ( P - 1 ) e. CC ) |
| 15 |
5 13 14
|
sylancl |
|- ( P e. Prime -> ( P - 1 ) e. CC ) |
| 16 |
15
|
mullidd |
|- ( P e. Prime -> ( 1 x. ( P - 1 ) ) = ( P - 1 ) ) |
| 17 |
12 16
|
eqtrd |
|- ( P e. Prime -> ( ( P ^ ( 1 - 1 ) ) x. ( P - 1 ) ) = ( P - 1 ) ) |
| 18 |
3 7 17
|
3eqtr3d |
|- ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) |