Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
2 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
3 |
|
nnexpcl |
|- ( ( P e. NN /\ K e. NN0 ) -> ( P ^ K ) e. NN ) |
4 |
1 2 3
|
syl2an |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. NN ) |
5 |
|
phival |
|- ( ( P ^ K ) e. NN -> ( phi ` ( P ^ K ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) |
6 |
4 5
|
syl |
|- ( ( P e. Prime /\ K e. NN ) -> ( phi ` ( P ^ K ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) |
7 |
|
nnm1nn0 |
|- ( K e. NN -> ( K - 1 ) e. NN0 ) |
8 |
|
nnexpcl |
|- ( ( P e. NN /\ ( K - 1 ) e. NN0 ) -> ( P ^ ( K - 1 ) ) e. NN ) |
9 |
1 7 8
|
syl2an |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) e. NN ) |
10 |
9
|
nncnd |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) e. CC ) |
11 |
1
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
12 |
11
|
adantr |
|- ( ( P e. Prime /\ K e. NN ) -> P e. CC ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
|
subdi |
|- ( ( ( P ^ ( K - 1 ) ) e. CC /\ P e. CC /\ 1 e. CC ) -> ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) ) |
15 |
13 14
|
mp3an3 |
|- ( ( ( P ^ ( K - 1 ) ) e. CC /\ P e. CC ) -> ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) ) |
16 |
10 12 15
|
syl2anc |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) ) |
17 |
10
|
mulid1d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) x. 1 ) = ( P ^ ( K - 1 ) ) ) |
18 |
17
|
oveq2d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ ( K - 1 ) ) x. P ) - ( ( P ^ ( K - 1 ) ) x. 1 ) ) = ( ( ( P ^ ( K - 1 ) ) x. P ) - ( P ^ ( K - 1 ) ) ) ) |
19 |
|
fzfi |
|- ( 1 ... ( P ^ K ) ) e. Fin |
20 |
|
ssrab2 |
|- { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } C_ ( 1 ... ( P ^ K ) ) |
21 |
|
ssfi |
|- ( ( ( 1 ... ( P ^ K ) ) e. Fin /\ { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } C_ ( 1 ... ( P ^ K ) ) ) -> { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin ) |
22 |
19 20 21
|
mp2an |
|- { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin |
23 |
|
ssrab2 |
|- { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } C_ ( 1 ... ( P ^ K ) ) |
24 |
|
ssfi |
|- ( ( ( 1 ... ( P ^ K ) ) e. Fin /\ { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } C_ ( 1 ... ( P ^ K ) ) ) -> { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } e. Fin ) |
25 |
19 23 24
|
mp2an |
|- { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } e. Fin |
26 |
|
inrab |
|- ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } i^i { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) } |
27 |
|
elfzelz |
|- ( x e. ( 1 ... ( P ^ K ) ) -> x e. ZZ ) |
28 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
29 |
|
rpexp |
|- ( ( P e. ZZ /\ x e. ZZ /\ K e. NN ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
30 |
28 29
|
syl3an1 |
|- ( ( P e. Prime /\ x e. ZZ /\ K e. NN ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
31 |
30
|
3expa |
|- ( ( ( P e. Prime /\ x e. ZZ ) /\ K e. NN ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
32 |
31
|
an32s |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( ( P ^ K ) gcd x ) = 1 <-> ( P gcd x ) = 1 ) ) |
33 |
|
simpr |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> x e. ZZ ) |
34 |
|
zexpcl |
|- ( ( P e. ZZ /\ K e. NN0 ) -> ( P ^ K ) e. ZZ ) |
35 |
28 2 34
|
syl2an |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. ZZ ) |
36 |
35
|
adantr |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( P ^ K ) e. ZZ ) |
37 |
33 36
|
gcdcomd |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( x gcd ( P ^ K ) ) = ( ( P ^ K ) gcd x ) ) |
38 |
37
|
eqeq1d |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> ( ( P ^ K ) gcd x ) = 1 ) ) |
39 |
|
coprm |
|- ( ( P e. Prime /\ x e. ZZ ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) |
40 |
39
|
adantlr |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( -. P || x <-> ( P gcd x ) = 1 ) ) |
41 |
32 38 40
|
3bitr4d |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> -. P || x ) ) |
42 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
43 |
42
|
adantl |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> x e. CC ) |
44 |
43
|
subid1d |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( x - 0 ) = x ) |
45 |
44
|
breq2d |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( P || ( x - 0 ) <-> P || x ) ) |
46 |
45
|
notbid |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( -. P || ( x - 0 ) <-> -. P || x ) ) |
47 |
41 46
|
bitr4d |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ZZ ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> -. P || ( x - 0 ) ) ) |
48 |
27 47
|
sylan2 |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( ( x gcd ( P ^ K ) ) = 1 <-> -. P || ( x - 0 ) ) ) |
49 |
48
|
biimpd |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( ( x gcd ( P ^ K ) ) = 1 -> -. P || ( x - 0 ) ) ) |
50 |
|
imnan |
|- ( ( ( x gcd ( P ^ K ) ) = 1 -> -. P || ( x - 0 ) ) <-> -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
51 |
49 50
|
sylib |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
52 |
51
|
ralrimiva |
|- ( ( P e. Prime /\ K e. NN ) -> A. x e. ( 1 ... ( P ^ K ) ) -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
53 |
|
rabeq0 |
|- ( { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) } = (/) <-> A. x e. ( 1 ... ( P ^ K ) ) -. ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) ) |
54 |
52 53
|
sylibr |
|- ( ( P e. Prime /\ K e. NN ) -> { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 /\ P || ( x - 0 ) ) } = (/) ) |
55 |
26 54
|
eqtrid |
|- ( ( P e. Prime /\ K e. NN ) -> ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } i^i { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = (/) ) |
56 |
|
hashun |
|- ( ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin /\ { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } e. Fin /\ ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } i^i { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = (/) ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) ) |
57 |
22 25 55 56
|
mp3an12i |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) ) |
58 |
|
unrab |
|- ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) } |
59 |
48
|
biimprd |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( -. P || ( x - 0 ) -> ( x gcd ( P ^ K ) ) = 1 ) ) |
60 |
59
|
con1d |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( -. ( x gcd ( P ^ K ) ) = 1 -> P || ( x - 0 ) ) ) |
61 |
60
|
orrd |
|- ( ( ( P e. Prime /\ K e. NN ) /\ x e. ( 1 ... ( P ^ K ) ) ) -> ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) ) |
62 |
61
|
ralrimiva |
|- ( ( P e. Prime /\ K e. NN ) -> A. x e. ( 1 ... ( P ^ K ) ) ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) ) |
63 |
|
rabid2 |
|- ( ( 1 ... ( P ^ K ) ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) } <-> A. x e. ( 1 ... ( P ^ K ) ) ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) ) |
64 |
62 63
|
sylibr |
|- ( ( P e. Prime /\ K e. NN ) -> ( 1 ... ( P ^ K ) ) = { x e. ( 1 ... ( P ^ K ) ) | ( ( x gcd ( P ^ K ) ) = 1 \/ P || ( x - 0 ) ) } ) |
65 |
58 64
|
eqtr4id |
|- ( ( P e. Prime /\ K e. NN ) -> ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = ( 1 ... ( P ^ K ) ) ) |
66 |
65
|
fveq2d |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( # ` ( 1 ... ( P ^ K ) ) ) ) |
67 |
4
|
nnnn0d |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. NN0 ) |
68 |
|
hashfz1 |
|- ( ( P ^ K ) e. NN0 -> ( # ` ( 1 ... ( P ^ K ) ) ) = ( P ^ K ) ) |
69 |
67 68
|
syl |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( 1 ... ( P ^ K ) ) ) = ( P ^ K ) ) |
70 |
|
expm1t |
|- ( ( P e. CC /\ K e. NN ) -> ( P ^ K ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
71 |
11 70
|
sylan |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
72 |
66 69 71
|
3eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } u. { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
73 |
1
|
adantr |
|- ( ( P e. Prime /\ K e. NN ) -> P e. NN ) |
74 |
|
1zzd |
|- ( ( P e. Prime /\ K e. NN ) -> 1 e. ZZ ) |
75 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
76 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
77 |
76
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
78 |
75 77
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
79 |
67 78
|
eleqtrdi |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. ( ZZ>= ` ( 1 - 1 ) ) ) |
80 |
|
0zd |
|- ( ( P e. Prime /\ K e. NN ) -> 0 e. ZZ ) |
81 |
73 74 79 80
|
hashdvds |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = ( ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) - ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) ) ) |
82 |
4
|
nncnd |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. CC ) |
83 |
82
|
subid1d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ K ) - 0 ) = ( P ^ K ) ) |
84 |
83
|
oveq1d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ K ) - 0 ) / P ) = ( ( P ^ K ) / P ) ) |
85 |
73
|
nnne0d |
|- ( ( P e. Prime /\ K e. NN ) -> P =/= 0 ) |
86 |
|
nnz |
|- ( K e. NN -> K e. ZZ ) |
87 |
86
|
adantl |
|- ( ( P e. Prime /\ K e. NN ) -> K e. ZZ ) |
88 |
12 85 87
|
expm1d |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) = ( ( P ^ K ) / P ) ) |
89 |
84 88
|
eqtr4d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ K ) - 0 ) / P ) = ( P ^ ( K - 1 ) ) ) |
90 |
89
|
fveq2d |
|- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) = ( |_ ` ( P ^ ( K - 1 ) ) ) ) |
91 |
9
|
nnzd |
|- ( ( P e. Prime /\ K e. NN ) -> ( P ^ ( K - 1 ) ) e. ZZ ) |
92 |
|
flid |
|- ( ( P ^ ( K - 1 ) ) e. ZZ -> ( |_ ` ( P ^ ( K - 1 ) ) ) = ( P ^ ( K - 1 ) ) ) |
93 |
91 92
|
syl |
|- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( P ^ ( K - 1 ) ) ) = ( P ^ ( K - 1 ) ) ) |
94 |
90 93
|
eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) = ( P ^ ( K - 1 ) ) ) |
95 |
76
|
oveq1i |
|- ( ( 1 - 1 ) - 0 ) = ( 0 - 0 ) |
96 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
97 |
95 96
|
eqtri |
|- ( ( 1 - 1 ) - 0 ) = 0 |
98 |
97
|
oveq1i |
|- ( ( ( 1 - 1 ) - 0 ) / P ) = ( 0 / P ) |
99 |
12 85
|
div0d |
|- ( ( P e. Prime /\ K e. NN ) -> ( 0 / P ) = 0 ) |
100 |
98 99
|
eqtrid |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( ( 1 - 1 ) - 0 ) / P ) = 0 ) |
101 |
100
|
fveq2d |
|- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) = ( |_ ` 0 ) ) |
102 |
|
0z |
|- 0 e. ZZ |
103 |
|
flid |
|- ( 0 e. ZZ -> ( |_ ` 0 ) = 0 ) |
104 |
102 103
|
ax-mp |
|- ( |_ ` 0 ) = 0 |
105 |
101 104
|
eqtrdi |
|- ( ( P e. Prime /\ K e. NN ) -> ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) = 0 ) |
106 |
94 105
|
oveq12d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( |_ ` ( ( ( P ^ K ) - 0 ) / P ) ) - ( |_ ` ( ( ( 1 - 1 ) - 0 ) / P ) ) ) = ( ( P ^ ( K - 1 ) ) - 0 ) ) |
107 |
10
|
subid1d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) - 0 ) = ( P ^ ( K - 1 ) ) ) |
108 |
81 106 107
|
3eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) = ( P ^ ( K - 1 ) ) ) |
109 |
108
|
oveq2d |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( P ^ ( K - 1 ) ) ) ) |
110 |
|
hashcl |
|- ( { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } e. Fin -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. NN0 ) |
111 |
22 110
|
ax-mp |
|- ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. NN0 |
112 |
111
|
nn0cni |
|- ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. CC |
113 |
|
addcom |
|- ( ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. CC /\ ( P ^ ( K - 1 ) ) e. CC ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( P ^ ( K - 1 ) ) ) = ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) ) |
114 |
112 10 113
|
sylancr |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( P ^ ( K - 1 ) ) ) = ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) ) |
115 |
109 114
|
eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | P || ( x - 0 ) } ) ) = ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) ) |
116 |
57 72 115
|
3eqtr3rd |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) = ( ( P ^ ( K - 1 ) ) x. P ) ) |
117 |
10 12
|
mulcld |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( P ^ ( K - 1 ) ) x. P ) e. CC ) |
118 |
112
|
a1i |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) e. CC ) |
119 |
117 10 118
|
subaddd |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( ( ( P ^ ( K - 1 ) ) x. P ) - ( P ^ ( K - 1 ) ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) <-> ( ( P ^ ( K - 1 ) ) + ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) = ( ( P ^ ( K - 1 ) ) x. P ) ) ) |
120 |
116 119
|
mpbird |
|- ( ( P e. Prime /\ K e. NN ) -> ( ( ( P ^ ( K - 1 ) ) x. P ) - ( P ^ ( K - 1 ) ) ) = ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) ) |
121 |
16 18 120
|
3eqtrrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( # ` { x e. ( 1 ... ( P ^ K ) ) | ( x gcd ( P ^ K ) ) = 1 } ) = ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) ) |
122 |
6 121
|
eqtrd |
|- ( ( P e. Prime /\ K e. NN ) -> ( phi ` ( P ^ K ) ) = ( ( P ^ ( K - 1 ) ) x. ( P - 1 ) ) ) |