| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
| 2 |
|
oveq2 |
|- ( n = N -> ( x gcd n ) = ( x gcd N ) ) |
| 3 |
2
|
eqeq1d |
|- ( n = N -> ( ( x gcd n ) = 1 <-> ( x gcd N ) = 1 ) ) |
| 4 |
1 3
|
rabeqbidv |
|- ( n = N -> { x e. ( 1 ... n ) | ( x gcd n ) = 1 } = { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) |
| 5 |
4
|
fveq2d |
|- ( n = N -> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |
| 6 |
|
df-phi |
|- phi = ( n e. NN |-> ( # ` { x e. ( 1 ... n ) | ( x gcd n ) = 1 } ) ) |
| 7 |
|
fvex |
|- ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) e. _V |
| 8 |
5 6 7
|
fvmpt |
|- ( N e. NN -> ( phi ` N ) = ( # ` { x e. ( 1 ... N ) | ( x gcd N ) = 1 } ) ) |