Description: The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | phlfn.h | |- H = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) | |
| Assertion | phlvsca | |- ( .x. e. X -> .x. = ( .s ` H ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | phlfn.h |  |-  H = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) | |
| 2 | 1 | phlstr | |- H Struct <. 1 , 8 >. | 
| 3 | vscaid | |- .s = Slot ( .s ` ndx ) | |
| 4 | snsspr1 |  |-  { <. ( .s ` ndx ) , .x. >. } C_ { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } | |
| 5 | ssun2 |  |-  { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) | |
| 6 | 5 1 | sseqtrri |  |-  { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } C_ H | 
| 7 | 4 6 | sstri |  |-  { <. ( .s ` ndx ) , .x. >. } C_ H | 
| 8 | 2 3 7 | strfv | |- ( .x. e. X -> .x. = ( .s ` H ) ) |