Description: The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | phlfn.h | |- H = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
|
Assertion | phlvsca | |- ( .x. e. X -> .x. = ( .s ` H ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlfn.h | |- H = ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
|
2 | 1 | phlstr | |- H Struct <. 1 , 8 >. |
3 | vscaid | |- .s = Slot ( .s ` ndx ) |
|
4 | snsspr1 | |- { <. ( .s ` ndx ) , .x. >. } C_ { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } |
|
5 | ssun2 | |- { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } C_ ( { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( Scalar ` ndx ) , T >. } u. { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } ) |
|
6 | 5 1 | sseqtrri | |- { <. ( .s ` ndx ) , .x. >. , <. ( .i ` ndx ) , ., >. } C_ H |
7 | 4 6 | sstri | |- { <. ( .s ` ndx ) , .x. >. } C_ H |
8 | 2 3 7 | strfv | |- ( .x. e. X -> .x. = ( .s ` H ) ) |