Metamath Proof Explorer


Theorem phnv

Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion phnv
|- ( U e. CPreHilOLD -> U e. NrmCVec )

Proof

Step Hyp Ref Expression
1 df-ph
 |-  CPreHilOLD = ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } )
2 inss1
 |-  ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) C_ NrmCVec
3 1 2 eqsstri
 |-  CPreHilOLD C_ NrmCVec
4 3 sseli
 |-  ( U e. CPreHilOLD -> U e. NrmCVec )