Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ph | |- CPreHilOLD = ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) |
|
2 | inss1 | |- ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) C_ NrmCVec |
|
3 | 1 2 | eqsstri | |- CPreHilOLD C_ NrmCVec |
4 | 3 | sseli | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |