Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ph |  |-  CPreHilOLD = ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) | |
| 2 | inss1 |  |-  ( NrmCVec i^i { <. <. g , s >. , n >. | A. x e. ran g A. y e. ran g ( ( ( n ` ( x g y ) ) ^ 2 ) + ( ( n ` ( x g ( -u 1 s y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( n ` x ) ^ 2 ) + ( ( n ` y ) ^ 2 ) ) ) } ) C_ NrmCVec | |
| 3 | 1 2 | eqsstri | |- CPreHilOLD C_ NrmCVec | 
| 4 | 3 | sseli | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |