Metamath Proof Explorer


Theorem phnvi

Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypothesis phnvi.1
|- U e. CPreHilOLD
Assertion phnvi
|- U e. NrmCVec

Proof

Step Hyp Ref Expression
1 phnvi.1
 |-  U e. CPreHilOLD
2 phnv
 |-  ( U e. CPreHilOLD -> U e. NrmCVec )
3 1 2 ax-mp
 |-  U e. NrmCVec