Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | phnvi.1 | |- U e. CPreHilOLD |
|
Assertion | phnvi | |- U e. NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnvi.1 | |- U e. CPreHilOLD |
|
2 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
3 | 1 2 | ax-mp | |- U e. NrmCVec |