| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
|- (/) C_ B |
| 2 |
|
sspsstr |
|- ( ( (/) C_ B /\ B C. A ) -> (/) C. A ) |
| 3 |
1 2
|
mpan |
|- ( B C. A -> (/) C. A ) |
| 4 |
|
0pss |
|- ( (/) C. A <-> A =/= (/) ) |
| 5 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
| 6 |
4 5
|
bitri |
|- ( (/) C. A <-> -. A = (/) ) |
| 7 |
3 6
|
sylib |
|- ( B C. A -> -. A = (/) ) |
| 8 |
|
nn0suc |
|- ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) ) |
| 9 |
8
|
orcanai |
|- ( ( A e. _om /\ -. A = (/) ) -> E. x e. _om A = suc x ) |
| 10 |
7 9
|
sylan2 |
|- ( ( A e. _om /\ B C. A ) -> E. x e. _om A = suc x ) |
| 11 |
|
pssnel |
|- ( B C. suc x -> E. y ( y e. suc x /\ -. y e. B ) ) |
| 12 |
|
pssss |
|- ( B C. suc x -> B C_ suc x ) |
| 13 |
|
ssdif |
|- ( B C_ suc x -> ( B \ { y } ) C_ ( suc x \ { y } ) ) |
| 14 |
|
disjsn |
|- ( ( B i^i { y } ) = (/) <-> -. y e. B ) |
| 15 |
|
disj3 |
|- ( ( B i^i { y } ) = (/) <-> B = ( B \ { y } ) ) |
| 16 |
14 15
|
bitr3i |
|- ( -. y e. B <-> B = ( B \ { y } ) ) |
| 17 |
|
sseq1 |
|- ( B = ( B \ { y } ) -> ( B C_ ( suc x \ { y } ) <-> ( B \ { y } ) C_ ( suc x \ { y } ) ) ) |
| 18 |
16 17
|
sylbi |
|- ( -. y e. B -> ( B C_ ( suc x \ { y } ) <-> ( B \ { y } ) C_ ( suc x \ { y } ) ) ) |
| 19 |
13 18
|
imbitrrid |
|- ( -. y e. B -> ( B C_ suc x -> B C_ ( suc x \ { y } ) ) ) |
| 20 |
12 19
|
syl5 |
|- ( -. y e. B -> ( B C. suc x -> B C_ ( suc x \ { y } ) ) ) |
| 21 |
|
peano2 |
|- ( x e. _om -> suc x e. _om ) |
| 22 |
|
nnfi |
|- ( suc x e. _om -> suc x e. Fin ) |
| 23 |
|
diffi |
|- ( suc x e. Fin -> ( suc x \ { y } ) e. Fin ) |
| 24 |
|
ssdomfi |
|- ( ( suc x \ { y } ) e. Fin -> ( B C_ ( suc x \ { y } ) -> B ~<_ ( suc x \ { y } ) ) ) |
| 25 |
21 22 23 24
|
4syl |
|- ( x e. _om -> ( B C_ ( suc x \ { y } ) -> B ~<_ ( suc x \ { y } ) ) ) |
| 26 |
20 25
|
sylan9 |
|- ( ( -. y e. B /\ x e. _om ) -> ( B C. suc x -> B ~<_ ( suc x \ { y } ) ) ) |
| 27 |
26
|
3impia |
|- ( ( -. y e. B /\ x e. _om /\ B C. suc x ) -> B ~<_ ( suc x \ { y } ) ) |
| 28 |
27
|
3com23 |
|- ( ( -. y e. B /\ B C. suc x /\ x e. _om ) -> B ~<_ ( suc x \ { y } ) ) |
| 29 |
28
|
3expa |
|- ( ( ( -. y e. B /\ B C. suc x ) /\ x e. _om ) -> B ~<_ ( suc x \ { y } ) ) |
| 30 |
29
|
adantrr |
|- ( ( ( -. y e. B /\ B C. suc x ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ ( suc x \ { y } ) ) |
| 31 |
|
nnfi |
|- ( x e. _om -> x e. Fin ) |
| 32 |
31
|
ad2antrl |
|- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> x e. Fin ) |
| 33 |
|
simpl |
|- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ ( suc x \ { y } ) ) |
| 34 |
|
simpr |
|- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> ( x e. _om /\ y e. suc x ) ) |
| 35 |
|
phplem1 |
|- ( ( x e. _om /\ y e. suc x ) -> x ~~ ( suc x \ { y } ) ) |
| 36 |
|
ensymfib |
|- ( x e. Fin -> ( x ~~ ( suc x \ { y } ) <-> ( suc x \ { y } ) ~~ x ) ) |
| 37 |
31 36
|
syl |
|- ( x e. _om -> ( x ~~ ( suc x \ { y } ) <-> ( suc x \ { y } ) ~~ x ) ) |
| 38 |
37
|
adantr |
|- ( ( x e. _om /\ y e. suc x ) -> ( x ~~ ( suc x \ { y } ) <-> ( suc x \ { y } ) ~~ x ) ) |
| 39 |
35 38
|
mpbid |
|- ( ( x e. _om /\ y e. suc x ) -> ( suc x \ { y } ) ~~ x ) |
| 40 |
|
endom |
|- ( ( suc x \ { y } ) ~~ x -> ( suc x \ { y } ) ~<_ x ) |
| 41 |
39 40
|
syl |
|- ( ( x e. _om /\ y e. suc x ) -> ( suc x \ { y } ) ~<_ x ) |
| 42 |
|
domtrfir |
|- ( ( x e. Fin /\ B ~<_ ( suc x \ { y } ) /\ ( suc x \ { y } ) ~<_ x ) -> B ~<_ x ) |
| 43 |
41 42
|
syl3an3 |
|- ( ( x e. Fin /\ B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ x ) |
| 44 |
32 33 34 43
|
syl3anc |
|- ( ( B ~<_ ( suc x \ { y } ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ x ) |
| 45 |
30 44
|
sylancom |
|- ( ( ( -. y e. B /\ B C. suc x ) /\ ( x e. _om /\ y e. suc x ) ) -> B ~<_ x ) |
| 46 |
45
|
exp43 |
|- ( -. y e. B -> ( B C. suc x -> ( x e. _om -> ( y e. suc x -> B ~<_ x ) ) ) ) |
| 47 |
46
|
com4r |
|- ( y e. suc x -> ( -. y e. B -> ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) ) ) |
| 48 |
47
|
imp |
|- ( ( y e. suc x /\ -. y e. B ) -> ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) ) |
| 49 |
48
|
exlimiv |
|- ( E. y ( y e. suc x /\ -. y e. B ) -> ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) ) |
| 50 |
11 49
|
mpcom |
|- ( B C. suc x -> ( x e. _om -> B ~<_ x ) ) |
| 51 |
|
simp1 |
|- ( ( x e. _om /\ suc x ~~ B /\ B ~<_ x ) -> x e. _om ) |
| 52 |
|
endom |
|- ( suc x ~~ B -> suc x ~<_ B ) |
| 53 |
|
domtrfir |
|- ( ( x e. Fin /\ suc x ~<_ B /\ B ~<_ x ) -> suc x ~<_ x ) |
| 54 |
52 53
|
syl3an2 |
|- ( ( x e. Fin /\ suc x ~~ B /\ B ~<_ x ) -> suc x ~<_ x ) |
| 55 |
31 54
|
syl3an1 |
|- ( ( x e. _om /\ suc x ~~ B /\ B ~<_ x ) -> suc x ~<_ x ) |
| 56 |
|
sssucid |
|- x C_ suc x |
| 57 |
|
ssdomfi |
|- ( suc x e. Fin -> ( x C_ suc x -> x ~<_ suc x ) ) |
| 58 |
22 56 57
|
mpisyl |
|- ( suc x e. _om -> x ~<_ suc x ) |
| 59 |
21 58
|
syl |
|- ( x e. _om -> x ~<_ suc x ) |
| 60 |
59
|
adantr |
|- ( ( x e. _om /\ suc x ~<_ x ) -> x ~<_ suc x ) |
| 61 |
|
sbthfi |
|- ( ( x e. Fin /\ suc x ~<_ x /\ x ~<_ suc x ) -> suc x ~~ x ) |
| 62 |
31 61
|
syl3an1 |
|- ( ( x e. _om /\ suc x ~<_ x /\ x ~<_ suc x ) -> suc x ~~ x ) |
| 63 |
60 62
|
mpd3an3 |
|- ( ( x e. _om /\ suc x ~<_ x ) -> suc x ~~ x ) |
| 64 |
51 55 63
|
syl2anc |
|- ( ( x e. _om /\ suc x ~~ B /\ B ~<_ x ) -> suc x ~~ x ) |
| 65 |
64
|
3com23 |
|- ( ( x e. _om /\ B ~<_ x /\ suc x ~~ B ) -> suc x ~~ x ) |
| 66 |
65
|
3expia |
|- ( ( x e. _om /\ B ~<_ x ) -> ( suc x ~~ B -> suc x ~~ x ) ) |
| 67 |
|
peano2b |
|- ( x e. _om <-> suc x e. _om ) |
| 68 |
|
nnord |
|- ( suc x e. _om -> Ord suc x ) |
| 69 |
67 68
|
sylbi |
|- ( x e. _om -> Ord suc x ) |
| 70 |
|
vex |
|- x e. _V |
| 71 |
70
|
sucid |
|- x e. suc x |
| 72 |
|
nordeq |
|- ( ( Ord suc x /\ x e. suc x ) -> suc x =/= x ) |
| 73 |
69 71 72
|
sylancl |
|- ( x e. _om -> suc x =/= x ) |
| 74 |
|
nneneq |
|- ( ( suc x e. _om /\ x e. _om ) -> ( suc x ~~ x <-> suc x = x ) ) |
| 75 |
67 74
|
sylanb |
|- ( ( x e. _om /\ x e. _om ) -> ( suc x ~~ x <-> suc x = x ) ) |
| 76 |
75
|
anidms |
|- ( x e. _om -> ( suc x ~~ x <-> suc x = x ) ) |
| 77 |
76
|
necon3bbid |
|- ( x e. _om -> ( -. suc x ~~ x <-> suc x =/= x ) ) |
| 78 |
73 77
|
mpbird |
|- ( x e. _om -> -. suc x ~~ x ) |
| 79 |
66 78
|
nsyli |
|- ( ( x e. _om /\ B ~<_ x ) -> ( x e. _om -> -. suc x ~~ B ) ) |
| 80 |
79
|
expcom |
|- ( B ~<_ x -> ( x e. _om -> ( x e. _om -> -. suc x ~~ B ) ) ) |
| 81 |
80
|
pm2.43d |
|- ( B ~<_ x -> ( x e. _om -> -. suc x ~~ B ) ) |
| 82 |
50 81
|
syli |
|- ( B C. suc x -> ( x e. _om -> -. suc x ~~ B ) ) |
| 83 |
82
|
com12 |
|- ( x e. _om -> ( B C. suc x -> -. suc x ~~ B ) ) |
| 84 |
|
psseq2 |
|- ( A = suc x -> ( B C. A <-> B C. suc x ) ) |
| 85 |
|
breq1 |
|- ( A = suc x -> ( A ~~ B <-> suc x ~~ B ) ) |
| 86 |
85
|
notbid |
|- ( A = suc x -> ( -. A ~~ B <-> -. suc x ~~ B ) ) |
| 87 |
84 86
|
imbi12d |
|- ( A = suc x -> ( ( B C. A -> -. A ~~ B ) <-> ( B C. suc x -> -. suc x ~~ B ) ) ) |
| 88 |
83 87
|
syl5ibrcom |
|- ( x e. _om -> ( A = suc x -> ( B C. A -> -. A ~~ B ) ) ) |
| 89 |
88
|
rexlimiv |
|- ( E. x e. _om A = suc x -> ( B C. A -> -. A ~~ B ) ) |
| 90 |
10 89
|
syl |
|- ( ( A e. _om /\ B C. A ) -> ( B C. A -> -. A ~~ B ) ) |
| 91 |
90
|
syldbl2 |
|- ( ( A e. _om /\ B C. A ) -> -. A ~~ B ) |