| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( x = A -> ( x e. _om <-> A e. _om ) ) |
| 2 |
|
psseq2 |
|- ( x = A -> ( B C. x <-> B C. A ) ) |
| 3 |
1 2
|
anbi12d |
|- ( x = A -> ( ( x e. _om /\ B C. x ) <-> ( A e. _om /\ B C. A ) ) ) |
| 4 |
|
breq2 |
|- ( x = A -> ( B ~< x <-> B ~< A ) ) |
| 5 |
3 4
|
imbi12d |
|- ( x = A -> ( ( ( x e. _om /\ B C. x ) -> B ~< x ) <-> ( ( A e. _om /\ B C. A ) -> B ~< A ) ) ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
|
pssss |
|- ( B C. x -> B C_ x ) |
| 8 |
|
ssdomg |
|- ( x e. _V -> ( B C_ x -> B ~<_ x ) ) |
| 9 |
6 7 8
|
mpsyl |
|- ( B C. x -> B ~<_ x ) |
| 10 |
9
|
adantl |
|- ( ( x e. _om /\ B C. x ) -> B ~<_ x ) |
| 11 |
|
php |
|- ( ( x e. _om /\ B C. x ) -> -. x ~~ B ) |
| 12 |
|
ensym |
|- ( B ~~ x -> x ~~ B ) |
| 13 |
11 12
|
nsyl |
|- ( ( x e. _om /\ B C. x ) -> -. B ~~ x ) |
| 14 |
|
brsdom |
|- ( B ~< x <-> ( B ~<_ x /\ -. B ~~ x ) ) |
| 15 |
10 13 14
|
sylanbrc |
|- ( ( x e. _om /\ B C. x ) -> B ~< x ) |
| 16 |
5 15
|
vtoclg |
|- ( A e. _om -> ( ( A e. _om /\ B C. A ) -> B ~< A ) ) |
| 17 |
16
|
anabsi5 |
|- ( ( A e. _om /\ B C. A ) -> B ~< A ) |