| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfi |
|- ( A e. Fin <-> E. x e. _om A ~~ x ) |
| 2 |
|
bren |
|- ( A ~~ x <-> E. f f : A -1-1-onto-> x ) |
| 3 |
|
pssss |
|- ( B C. A -> B C_ A ) |
| 4 |
|
imass2 |
|- ( B C_ A -> ( f " B ) C_ ( f " A ) ) |
| 5 |
3 4
|
syl |
|- ( B C. A -> ( f " B ) C_ ( f " A ) ) |
| 6 |
5
|
adantl |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f " B ) C_ ( f " A ) ) |
| 7 |
|
pssnel |
|- ( B C. A -> E. y ( y e. A /\ -. y e. B ) ) |
| 8 |
|
eldif |
|- ( y e. ( A \ B ) <-> ( y e. A /\ -. y e. B ) ) |
| 9 |
|
f1ofn |
|- ( f : A -1-1-onto-> x -> f Fn A ) |
| 10 |
|
difss |
|- ( A \ B ) C_ A |
| 11 |
|
fnfvima |
|- ( ( f Fn A /\ ( A \ B ) C_ A /\ y e. ( A \ B ) ) -> ( f ` y ) e. ( f " ( A \ B ) ) ) |
| 12 |
11
|
3expia |
|- ( ( f Fn A /\ ( A \ B ) C_ A ) -> ( y e. ( A \ B ) -> ( f ` y ) e. ( f " ( A \ B ) ) ) ) |
| 13 |
9 10 12
|
sylancl |
|- ( f : A -1-1-onto-> x -> ( y e. ( A \ B ) -> ( f ` y ) e. ( f " ( A \ B ) ) ) ) |
| 14 |
|
dff1o3 |
|- ( f : A -1-1-onto-> x <-> ( f : A -onto-> x /\ Fun `' f ) ) |
| 15 |
|
imadif |
|- ( Fun `' f -> ( f " ( A \ B ) ) = ( ( f " A ) \ ( f " B ) ) ) |
| 16 |
14 15
|
simplbiim |
|- ( f : A -1-1-onto-> x -> ( f " ( A \ B ) ) = ( ( f " A ) \ ( f " B ) ) ) |
| 17 |
16
|
eleq2d |
|- ( f : A -1-1-onto-> x -> ( ( f ` y ) e. ( f " ( A \ B ) ) <-> ( f ` y ) e. ( ( f " A ) \ ( f " B ) ) ) ) |
| 18 |
13 17
|
sylibd |
|- ( f : A -1-1-onto-> x -> ( y e. ( A \ B ) -> ( f ` y ) e. ( ( f " A ) \ ( f " B ) ) ) ) |
| 19 |
|
n0i |
|- ( ( f ` y ) e. ( ( f " A ) \ ( f " B ) ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) |
| 20 |
18 19
|
syl6 |
|- ( f : A -1-1-onto-> x -> ( y e. ( A \ B ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) ) |
| 21 |
8 20
|
biimtrrid |
|- ( f : A -1-1-onto-> x -> ( ( y e. A /\ -. y e. B ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) ) |
| 22 |
21
|
exlimdv |
|- ( f : A -1-1-onto-> x -> ( E. y ( y e. A /\ -. y e. B ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) ) |
| 23 |
22
|
imp |
|- ( ( f : A -1-1-onto-> x /\ E. y ( y e. A /\ -. y e. B ) ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) |
| 24 |
7 23
|
sylan2 |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> -. ( ( f " A ) \ ( f " B ) ) = (/) ) |
| 25 |
|
ssdif0 |
|- ( ( f " A ) C_ ( f " B ) <-> ( ( f " A ) \ ( f " B ) ) = (/) ) |
| 26 |
24 25
|
sylnibr |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> -. ( f " A ) C_ ( f " B ) ) |
| 27 |
|
dfpss3 |
|- ( ( f " B ) C. ( f " A ) <-> ( ( f " B ) C_ ( f " A ) /\ -. ( f " A ) C_ ( f " B ) ) ) |
| 28 |
6 26 27
|
sylanbrc |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f " B ) C. ( f " A ) ) |
| 29 |
|
imadmrn |
|- ( f " dom f ) = ran f |
| 30 |
|
f1odm |
|- ( f : A -1-1-onto-> x -> dom f = A ) |
| 31 |
30
|
imaeq2d |
|- ( f : A -1-1-onto-> x -> ( f " dom f ) = ( f " A ) ) |
| 32 |
|
f1ofo |
|- ( f : A -1-1-onto-> x -> f : A -onto-> x ) |
| 33 |
|
forn |
|- ( f : A -onto-> x -> ran f = x ) |
| 34 |
32 33
|
syl |
|- ( f : A -1-1-onto-> x -> ran f = x ) |
| 35 |
29 31 34
|
3eqtr3a |
|- ( f : A -1-1-onto-> x -> ( f " A ) = x ) |
| 36 |
35
|
psseq2d |
|- ( f : A -1-1-onto-> x -> ( ( f " B ) C. ( f " A ) <-> ( f " B ) C. x ) ) |
| 37 |
36
|
adantr |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( ( f " B ) C. ( f " A ) <-> ( f " B ) C. x ) ) |
| 38 |
28 37
|
mpbid |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f " B ) C. x ) |
| 39 |
|
php2 |
|- ( ( x e. _om /\ ( f " B ) C. x ) -> ( f " B ) ~< x ) |
| 40 |
38 39
|
sylan2 |
|- ( ( x e. _om /\ ( f : A -1-1-onto-> x /\ B C. A ) ) -> ( f " B ) ~< x ) |
| 41 |
|
nnfi |
|- ( x e. _om -> x e. Fin ) |
| 42 |
|
f1of1 |
|- ( f : A -1-1-onto-> x -> f : A -1-1-> x ) |
| 43 |
|
f1ores |
|- ( ( f : A -1-1-> x /\ B C_ A ) -> ( f |` B ) : B -1-1-onto-> ( f " B ) ) |
| 44 |
42 3 43
|
syl2an |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> ( f |` B ) : B -1-1-onto-> ( f " B ) ) |
| 45 |
|
vex |
|- f e. _V |
| 46 |
45
|
resex |
|- ( f |` B ) e. _V |
| 47 |
|
f1oeq1 |
|- ( y = ( f |` B ) -> ( y : B -1-1-onto-> ( f " B ) <-> ( f |` B ) : B -1-1-onto-> ( f " B ) ) ) |
| 48 |
46 47
|
spcev |
|- ( ( f |` B ) : B -1-1-onto-> ( f " B ) -> E. y y : B -1-1-onto-> ( f " B ) ) |
| 49 |
|
bren |
|- ( B ~~ ( f " B ) <-> E. y y : B -1-1-onto-> ( f " B ) ) |
| 50 |
48 49
|
sylibr |
|- ( ( f |` B ) : B -1-1-onto-> ( f " B ) -> B ~~ ( f " B ) ) |
| 51 |
44 50
|
syl |
|- ( ( f : A -1-1-onto-> x /\ B C. A ) -> B ~~ ( f " B ) ) |
| 52 |
|
endom |
|- ( B ~~ ( f " B ) -> B ~<_ ( f " B ) ) |
| 53 |
|
sdomdom |
|- ( ( f " B ) ~< x -> ( f " B ) ~<_ x ) |
| 54 |
|
domfi |
|- ( ( x e. Fin /\ ( f " B ) ~<_ x ) -> ( f " B ) e. Fin ) |
| 55 |
53 54
|
sylan2 |
|- ( ( x e. Fin /\ ( f " B ) ~< x ) -> ( f " B ) e. Fin ) |
| 56 |
55
|
3adant2 |
|- ( ( x e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> ( f " B ) e. Fin ) |
| 57 |
|
domfi |
|- ( ( ( f " B ) e. Fin /\ B ~<_ ( f " B ) ) -> B e. Fin ) |
| 58 |
57
|
3adant3 |
|- ( ( ( f " B ) e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B e. Fin ) |
| 59 |
|
domsdomtrfi |
|- ( ( B e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
| 60 |
58 59
|
syld3an1 |
|- ( ( ( f " B ) e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
| 61 |
56 60
|
syld3an1 |
|- ( ( x e. Fin /\ B ~<_ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
| 62 |
52 61
|
syl3an2 |
|- ( ( x e. Fin /\ B ~~ ( f " B ) /\ ( f " B ) ~< x ) -> B ~< x ) |
| 63 |
62
|
3expia |
|- ( ( x e. Fin /\ B ~~ ( f " B ) ) -> ( ( f " B ) ~< x -> B ~< x ) ) |
| 64 |
41 51 63
|
syl2an |
|- ( ( x e. _om /\ ( f : A -1-1-onto-> x /\ B C. A ) ) -> ( ( f " B ) ~< x -> B ~< x ) ) |
| 65 |
40 64
|
mpd |
|- ( ( x e. _om /\ ( f : A -1-1-onto-> x /\ B C. A ) ) -> B ~< x ) |
| 66 |
65
|
exp32 |
|- ( x e. _om -> ( f : A -1-1-onto-> x -> ( B C. A -> B ~< x ) ) ) |
| 67 |
66
|
exlimdv |
|- ( x e. _om -> ( E. f f : A -1-1-onto-> x -> ( B C. A -> B ~< x ) ) ) |
| 68 |
2 67
|
biimtrid |
|- ( x e. _om -> ( A ~~ x -> ( B C. A -> B ~< x ) ) ) |
| 69 |
|
ensymfib |
|- ( x e. Fin -> ( x ~~ A <-> A ~~ x ) ) |
| 70 |
69
|
adantr |
|- ( ( x e. Fin /\ B ~< x ) -> ( x ~~ A <-> A ~~ x ) ) |
| 71 |
70
|
biimp3ar |
|- ( ( x e. Fin /\ B ~< x /\ A ~~ x ) -> x ~~ A ) |
| 72 |
|
endom |
|- ( x ~~ A -> x ~<_ A ) |
| 73 |
|
sdomdom |
|- ( B ~< x -> B ~<_ x ) |
| 74 |
|
domfi |
|- ( ( x e. Fin /\ B ~<_ x ) -> B e. Fin ) |
| 75 |
73 74
|
sylan2 |
|- ( ( x e. Fin /\ B ~< x ) -> B e. Fin ) |
| 76 |
75
|
3adant3 |
|- ( ( x e. Fin /\ B ~< x /\ x ~<_ A ) -> B e. Fin ) |
| 77 |
|
sdomdomtrfi |
|- ( ( B e. Fin /\ B ~< x /\ x ~<_ A ) -> B ~< A ) |
| 78 |
76 77
|
syld3an1 |
|- ( ( x e. Fin /\ B ~< x /\ x ~<_ A ) -> B ~< A ) |
| 79 |
72 78
|
syl3an3 |
|- ( ( x e. Fin /\ B ~< x /\ x ~~ A ) -> B ~< A ) |
| 80 |
71 79
|
syld3an3 |
|- ( ( x e. Fin /\ B ~< x /\ A ~~ x ) -> B ~< A ) |
| 81 |
41 80
|
syl3an1 |
|- ( ( x e. _om /\ B ~< x /\ A ~~ x ) -> B ~< A ) |
| 82 |
81
|
3com23 |
|- ( ( x e. _om /\ A ~~ x /\ B ~< x ) -> B ~< A ) |
| 83 |
82
|
3exp |
|- ( x e. _om -> ( A ~~ x -> ( B ~< x -> B ~< A ) ) ) |
| 84 |
68 83
|
syldd |
|- ( x e. _om -> ( A ~~ x -> ( B C. A -> B ~< A ) ) ) |
| 85 |
84
|
rexlimiv |
|- ( E. x e. _om A ~~ x -> ( B C. A -> B ~< A ) ) |
| 86 |
1 85
|
sylbi |
|- ( A e. Fin -> ( B C. A -> B ~< A ) ) |
| 87 |
86
|
imp |
|- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |