| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sucidg |
|- ( A e. _om -> A e. suc A ) |
| 2 |
|
nnord |
|- ( A e. _om -> Ord A ) |
| 3 |
|
ordsuc |
|- ( Ord A <-> Ord suc A ) |
| 4 |
3
|
biimpi |
|- ( Ord A -> Ord suc A ) |
| 5 |
|
ordelpss |
|- ( ( Ord A /\ Ord suc A ) -> ( A e. suc A <-> A C. suc A ) ) |
| 6 |
2 4 5
|
syl2anc2 |
|- ( A e. _om -> ( A e. suc A <-> A C. suc A ) ) |
| 7 |
1 6
|
mpbid |
|- ( A e. _om -> A C. suc A ) |
| 8 |
|
peano2b |
|- ( A e. _om <-> suc A e. _om ) |
| 9 |
|
php2 |
|- ( ( suc A e. _om /\ A C. suc A ) -> A ~< suc A ) |
| 10 |
8 9
|
sylanb |
|- ( ( A e. _om /\ A C. suc A ) -> A ~< suc A ) |
| 11 |
7 10
|
mpdan |
|- ( A e. _om -> A ~< suc A ) |