Step |
Hyp |
Ref |
Expression |
1 |
|
phpar.1 |
|- X = ( BaseSet ` U ) |
2 |
|
phpar.2 |
|- G = ( +v ` U ) |
3 |
|
phpar.4 |
|- S = ( .sOLD ` U ) |
4 |
|
phpar.6 |
|- N = ( normCV ` U ) |
5 |
2
|
fvexi |
|- G e. _V |
6 |
3
|
fvexi |
|- S e. _V |
7 |
4
|
fvexi |
|- N e. _V |
8 |
5 6 7
|
3pm3.2i |
|- ( G e. _V /\ S e. _V /\ N e. _V ) |
9 |
2 3 4
|
phop |
|- ( U e. CPreHilOLD -> U = <. <. G , S >. , N >. ) |
10 |
9
|
eleq1d |
|- ( U e. CPreHilOLD -> ( U e. CPreHilOLD <-> <. <. G , S >. , N >. e. CPreHilOLD ) ) |
11 |
10
|
ibi |
|- ( U e. CPreHilOLD -> <. <. G , S >. , N >. e. CPreHilOLD ) |
12 |
1 2
|
bafval |
|- X = ran G |
13 |
12
|
isphg |
|- ( ( G e. _V /\ S e. _V /\ N e. _V ) -> ( <. <. G , S >. , N >. e. CPreHilOLD <-> ( <. <. G , S >. , N >. e. NrmCVec /\ A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) ) |
14 |
13
|
simplbda |
|- ( ( ( G e. _V /\ S e. _V /\ N e. _V ) /\ <. <. G , S >. , N >. e. CPreHilOLD ) -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
15 |
8 11 14
|
sylancr |
|- ( U e. CPreHilOLD -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
17 |
|
fvoveq1 |
|- ( x = A -> ( N ` ( x G y ) ) = ( N ` ( A G y ) ) ) |
18 |
17
|
oveq1d |
|- ( x = A -> ( ( N ` ( x G y ) ) ^ 2 ) = ( ( N ` ( A G y ) ) ^ 2 ) ) |
19 |
|
fvoveq1 |
|- ( x = A -> ( N ` ( x G ( -u 1 S y ) ) ) = ( N ` ( A G ( -u 1 S y ) ) ) ) |
20 |
19
|
oveq1d |
|- ( x = A -> ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) |
21 |
18 20
|
oveq12d |
|- ( x = A -> ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) ) |
22 |
|
fveq2 |
|- ( x = A -> ( N ` x ) = ( N ` A ) ) |
23 |
22
|
oveq1d |
|- ( x = A -> ( ( N ` x ) ^ 2 ) = ( ( N ` A ) ^ 2 ) ) |
24 |
23
|
oveq1d |
|- ( x = A -> ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) |
25 |
24
|
oveq2d |
|- ( x = A -> ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) |
26 |
21 25
|
eqeq12d |
|- ( x = A -> ( ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) ) ) |
27 |
|
oveq2 |
|- ( y = B -> ( A G y ) = ( A G B ) ) |
28 |
27
|
fveq2d |
|- ( y = B -> ( N ` ( A G y ) ) = ( N ` ( A G B ) ) ) |
29 |
28
|
oveq1d |
|- ( y = B -> ( ( N ` ( A G y ) ) ^ 2 ) = ( ( N ` ( A G B ) ) ^ 2 ) ) |
30 |
|
oveq2 |
|- ( y = B -> ( -u 1 S y ) = ( -u 1 S B ) ) |
31 |
30
|
oveq2d |
|- ( y = B -> ( A G ( -u 1 S y ) ) = ( A G ( -u 1 S B ) ) ) |
32 |
31
|
fveq2d |
|- ( y = B -> ( N ` ( A G ( -u 1 S y ) ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
33 |
32
|
oveq1d |
|- ( y = B -> ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
34 |
29 33
|
oveq12d |
|- ( y = B -> ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) = ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
35 |
|
fveq2 |
|- ( y = B -> ( N ` y ) = ( N ` B ) ) |
36 |
35
|
oveq1d |
|- ( y = B -> ( ( N ` y ) ^ 2 ) = ( ( N ` B ) ^ 2 ) ) |
37 |
36
|
oveq2d |
|- ( y = B -> ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) = ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) |
38 |
37
|
oveq2d |
|- ( y = B -> ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |
39 |
34 38
|
eqeq12d |
|- ( y = B -> ( ( ( ( N ` ( A G y ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) <-> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
40 |
26 39
|
rspc2v |
|- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
41 |
40
|
3adant1 |
|- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( ( ( N ` ( x G y ) ) ^ 2 ) + ( ( N ` ( x G ( -u 1 S y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` x ) ^ 2 ) + ( ( N ` y ) ^ 2 ) ) ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) ) |
42 |
16 41
|
mpd |
|- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) + ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( N ` A ) ^ 2 ) + ( ( N ` B ) ^ 2 ) ) ) ) |