| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phpeqd.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | phpeqd.2 |  |-  ( ph -> B C_ A ) | 
						
							| 3 |  | phpeqd.3 |  |-  ( ph -> A ~~ B ) | 
						
							| 4 | 2 | adantr |  |-  ( ( ph /\ -. A = B ) -> B C_ A ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ -. A = B ) -> -. A = B ) | 
						
							| 6 | 5 | neqcomd |  |-  ( ( ph /\ -. A = B ) -> -. B = A ) | 
						
							| 7 |  | dfpss2 |  |-  ( B C. A <-> ( B C_ A /\ -. B = A ) ) | 
						
							| 8 | 4 6 7 | sylanbrc |  |-  ( ( ph /\ -. A = B ) -> B C. A ) | 
						
							| 9 |  | php3 |  |-  ( ( A e. Fin /\ B C. A ) -> B ~< A ) | 
						
							| 10 | 1 8 9 | syl2an2r |  |-  ( ( ph /\ -. A = B ) -> B ~< A ) | 
						
							| 11 |  | sdomnen |  |-  ( B ~< A -> -. B ~~ A ) | 
						
							| 12 |  | ensymfib |  |-  ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) | 
						
							| 13 | 12 | notbid |  |-  ( A e. Fin -> ( -. A ~~ B <-> -. B ~~ A ) ) | 
						
							| 14 | 13 | biimpar |  |-  ( ( A e. Fin /\ -. B ~~ A ) -> -. A ~~ B ) | 
						
							| 15 | 1 11 14 | syl2an |  |-  ( ( ph /\ B ~< A ) -> -. A ~~ B ) | 
						
							| 16 | 10 15 | syldan |  |-  ( ( ph /\ -. A = B ) -> -. A ~~ B ) | 
						
							| 17 | 16 | ex |  |-  ( ph -> ( -. A = B -> -. A ~~ B ) ) | 
						
							| 18 | 3 17 | mt4d |  |-  ( ph -> A = B ) |