Metamath Proof Explorer


Theorem phpeqd

Description: Corollary of the Pigeonhole Principle using equality. Strengthening of php expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses phpeqd.1
|- ( ph -> A e. Fin )
phpeqd.2
|- ( ph -> B C_ A )
phpeqd.3
|- ( ph -> A ~~ B )
Assertion phpeqd
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 phpeqd.1
 |-  ( ph -> A e. Fin )
2 phpeqd.2
 |-  ( ph -> B C_ A )
3 phpeqd.3
 |-  ( ph -> A ~~ B )
4 2 adantr
 |-  ( ( ph /\ -. A = B ) -> B C_ A )
5 simpr
 |-  ( ( ph /\ -. A = B ) -> -. A = B )
6 5 neqcomd
 |-  ( ( ph /\ -. A = B ) -> -. B = A )
7 dfpss2
 |-  ( B C. A <-> ( B C_ A /\ -. B = A ) )
8 4 6 7 sylanbrc
 |-  ( ( ph /\ -. A = B ) -> B C. A )
9 php3
 |-  ( ( A e. Fin /\ B C. A ) -> B ~< A )
10 1 8 9 syl2an2r
 |-  ( ( ph /\ -. A = B ) -> B ~< A )
11 sdomnen
 |-  ( B ~< A -> -. B ~~ A )
12 ensym
 |-  ( A ~~ B -> B ~~ A )
13 11 12 nsyl
 |-  ( B ~< A -> -. A ~~ B )
14 10 13 syl
 |-  ( ( ph /\ -. A = B ) -> -. A ~~ B )
15 14 ex
 |-  ( ph -> ( -. A = B -> -. A ~~ B ) )
16 3 15 mt4d
 |-  ( ph -> A = B )