| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							phpeqdOLD.1 | 
							 |-  ( ph -> A e. Fin )  | 
						
						
							| 2 | 
							
								
							 | 
							phpeqdOLD.2 | 
							 |-  ( ph -> B C_ A )  | 
						
						
							| 3 | 
							
								
							 | 
							phpeqdOLD.3 | 
							 |-  ( ph -> A ~~ B )  | 
						
						
							| 4 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ -. A = B ) -> B C_ A )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ -. A = B ) -> -. A = B )  | 
						
						
							| 6 | 
							
								5
							 | 
							neqcomd | 
							 |-  ( ( ph /\ -. A = B ) -> -. B = A )  | 
						
						
							| 7 | 
							
								
							 | 
							dfpss2 | 
							 |-  ( B C. A <-> ( B C_ A /\ -. B = A ) )  | 
						
						
							| 8 | 
							
								4 6 7
							 | 
							sylanbrc | 
							 |-  ( ( ph /\ -. A = B ) -> B C. A )  | 
						
						
							| 9 | 
							
								
							 | 
							php3 | 
							 |-  ( ( A e. Fin /\ B C. A ) -> B ~< A )  | 
						
						
							| 10 | 
							
								1 8 9
							 | 
							syl2an2r | 
							 |-  ( ( ph /\ -. A = B ) -> B ~< A )  | 
						
						
							| 11 | 
							
								
							 | 
							sdomnen | 
							 |-  ( B ~< A -> -. B ~~ A )  | 
						
						
							| 12 | 
							
								
							 | 
							ensym | 
							 |-  ( A ~~ B -> B ~~ A )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							nsyl | 
							 |-  ( B ~< A -> -. A ~~ B )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							syl | 
							 |-  ( ( ph /\ -. A = B ) -> -. A ~~ B )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							 |-  ( ph -> ( -. A = B -> -. A ~~ B ) )  | 
						
						
							| 16 | 
							
								3 15
							 | 
							mt4d | 
							 |-  ( ph -> A = B )  |