Metamath Proof Explorer


Theorem phphashd

Description: Corollary of the Pigeonhole Principle using equality. Equivalent of phpeqd expressed using the hash function. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses phphashd.1
|- ( ph -> A e. Fin )
phphashd.2
|- ( ph -> B C_ A )
phphashd.3
|- ( ph -> ( # ` A ) = ( # ` B ) )
Assertion phphashd
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 phphashd.1
 |-  ( ph -> A e. Fin )
2 phphashd.2
 |-  ( ph -> B C_ A )
3 phphashd.3
 |-  ( ph -> ( # ` A ) = ( # ` B ) )
4 1 2 ssfid
 |-  ( ph -> B e. Fin )
5 hashen
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) )
6 1 4 5 syl2anc
 |-  ( ph -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) )
7 3 6 mpbid
 |-  ( ph -> A ~~ B )
8 1 2 7 phpeqd
 |-  ( ph -> A = B )