Description: Corollary of the Pigeonhole Principle using equality. Equivalent of phpeqd expressed using the hash function. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phphashd.1 | |- ( ph -> A e. Fin ) |
|
phphashd.2 | |- ( ph -> B C_ A ) |
||
phphashd.3 | |- ( ph -> ( # ` A ) = ( # ` B ) ) |
||
Assertion | phphashd | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phphashd.1 | |- ( ph -> A e. Fin ) |
|
2 | phphashd.2 | |- ( ph -> B C_ A ) |
|
3 | phphashd.3 | |- ( ph -> ( # ` A ) = ( # ` B ) ) |
|
4 | 1 2 | ssfid | |- ( ph -> B e. Fin ) |
5 | hashen | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
|
6 | 1 4 5 | syl2anc | |- ( ph -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
7 | 3 6 | mpbid | |- ( ph -> A ~~ B ) |
8 | 1 2 7 | phpeqd | |- ( ph -> A = B ) |