Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. _om /\ B e. suc A ) -> A e. _om ) |
2 |
|
peano2 |
|- ( A e. _om -> suc A e. _om ) |
3 |
|
enrefnn |
|- ( suc A e. _om -> suc A ~~ suc A ) |
4 |
2 3
|
syl |
|- ( A e. _om -> suc A ~~ suc A ) |
5 |
4
|
adantr |
|- ( ( A e. _om /\ B e. suc A ) -> suc A ~~ suc A ) |
6 |
|
simpr |
|- ( ( A e. _om /\ B e. suc A ) -> B e. suc A ) |
7 |
|
dif1en |
|- ( ( A e. _om /\ suc A ~~ suc A /\ B e. suc A ) -> ( suc A \ { B } ) ~~ A ) |
8 |
1 5 6 7
|
syl3anc |
|- ( ( A e. _om /\ B e. suc A ) -> ( suc A \ { B } ) ~~ A ) |
9 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
10 |
|
ensymfib |
|- ( A e. Fin -> ( A ~~ ( suc A \ { B } ) <-> ( suc A \ { B } ) ~~ A ) ) |
11 |
1 9 10
|
3syl |
|- ( ( A e. _om /\ B e. suc A ) -> ( A ~~ ( suc A \ { B } ) <-> ( suc A \ { B } ) ~~ A ) ) |
12 |
8 11
|
mpbird |
|- ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) ) |