Metamath Proof Explorer


Theorem phplem1

Description: Lemma for Pigeonhole Principle. If we join a natural number to itself minus an element, we end up with its successor minus the same element. (Contributed by NM, 25-May-1998)

Ref Expression
Assertion phplem1
|- ( ( A e. _om /\ B e. A ) -> ( { A } u. ( A \ { B } ) ) = ( suc A \ { B } ) )

Proof

Step Hyp Ref Expression
1 nnord
 |-  ( A e. _om -> Ord A )
2 nordeq
 |-  ( ( Ord A /\ B e. A ) -> A =/= B )
3 disjsn2
 |-  ( A =/= B -> ( { A } i^i { B } ) = (/) )
4 2 3 syl
 |-  ( ( Ord A /\ B e. A ) -> ( { A } i^i { B } ) = (/) )
5 1 4 sylan
 |-  ( ( A e. _om /\ B e. A ) -> ( { A } i^i { B } ) = (/) )
6 undif4
 |-  ( ( { A } i^i { B } ) = (/) -> ( { A } u. ( A \ { B } ) ) = ( ( { A } u. A ) \ { B } ) )
7 df-suc
 |-  suc A = ( A u. { A } )
8 7 equncomi
 |-  suc A = ( { A } u. A )
9 8 difeq1i
 |-  ( suc A \ { B } ) = ( ( { A } u. A ) \ { B } )
10 6 9 eqtr4di
 |-  ( ( { A } i^i { B } ) = (/) -> ( { A } u. ( A \ { B } ) ) = ( suc A \ { B } ) )
11 5 10 syl
 |-  ( ( A e. _om /\ B e. A ) -> ( { A } u. ( A \ { B } ) ) = ( suc A \ { B } ) )