| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phplem2OLD.1 |
|- A e. _V |
| 2 |
|
phplem2OLD.2 |
|- B e. _V |
| 3 |
|
snex |
|- { <. B , A >. } e. _V |
| 4 |
2 1
|
f1osn |
|- { <. B , A >. } : { B } -1-1-onto-> { A } |
| 5 |
|
f1oen3g |
|- ( ( { <. B , A >. } e. _V /\ { <. B , A >. } : { B } -1-1-onto-> { A } ) -> { B } ~~ { A } ) |
| 6 |
3 4 5
|
mp2an |
|- { B } ~~ { A } |
| 7 |
1
|
difexi |
|- ( A \ { B } ) e. _V |
| 8 |
7
|
enref |
|- ( A \ { B } ) ~~ ( A \ { B } ) |
| 9 |
6 8
|
pm3.2i |
|- ( { B } ~~ { A } /\ ( A \ { B } ) ~~ ( A \ { B } ) ) |
| 10 |
|
incom |
|- ( { A } i^i ( A \ { B } ) ) = ( ( A \ { B } ) i^i { A } ) |
| 11 |
|
difss |
|- ( A \ { B } ) C_ A |
| 12 |
|
ssrin |
|- ( ( A \ { B } ) C_ A -> ( ( A \ { B } ) i^i { A } ) C_ ( A i^i { A } ) ) |
| 13 |
11 12
|
ax-mp |
|- ( ( A \ { B } ) i^i { A } ) C_ ( A i^i { A } ) |
| 14 |
|
nnord |
|- ( A e. _om -> Ord A ) |
| 15 |
|
orddisj |
|- ( Ord A -> ( A i^i { A } ) = (/) ) |
| 16 |
14 15
|
syl |
|- ( A e. _om -> ( A i^i { A } ) = (/) ) |
| 17 |
13 16
|
sseqtrid |
|- ( A e. _om -> ( ( A \ { B } ) i^i { A } ) C_ (/) ) |
| 18 |
|
ss0 |
|- ( ( ( A \ { B } ) i^i { A } ) C_ (/) -> ( ( A \ { B } ) i^i { A } ) = (/) ) |
| 19 |
17 18
|
syl |
|- ( A e. _om -> ( ( A \ { B } ) i^i { A } ) = (/) ) |
| 20 |
10 19
|
eqtrid |
|- ( A e. _om -> ( { A } i^i ( A \ { B } ) ) = (/) ) |
| 21 |
|
disjdif |
|- ( { B } i^i ( A \ { B } ) ) = (/) |
| 22 |
20 21
|
jctil |
|- ( A e. _om -> ( ( { B } i^i ( A \ { B } ) ) = (/) /\ ( { A } i^i ( A \ { B } ) ) = (/) ) ) |
| 23 |
|
unen |
|- ( ( ( { B } ~~ { A } /\ ( A \ { B } ) ~~ ( A \ { B } ) ) /\ ( ( { B } i^i ( A \ { B } ) ) = (/) /\ ( { A } i^i ( A \ { B } ) ) = (/) ) ) -> ( { B } u. ( A \ { B } ) ) ~~ ( { A } u. ( A \ { B } ) ) ) |
| 24 |
9 22 23
|
sylancr |
|- ( A e. _om -> ( { B } u. ( A \ { B } ) ) ~~ ( { A } u. ( A \ { B } ) ) ) |
| 25 |
24
|
adantr |
|- ( ( A e. _om /\ B e. A ) -> ( { B } u. ( A \ { B } ) ) ~~ ( { A } u. ( A \ { B } ) ) ) |
| 26 |
|
uncom |
|- ( { B } u. ( A \ { B } ) ) = ( ( A \ { B } ) u. { B } ) |
| 27 |
|
difsnid |
|- ( B e. A -> ( ( A \ { B } ) u. { B } ) = A ) |
| 28 |
26 27
|
eqtrid |
|- ( B e. A -> ( { B } u. ( A \ { B } ) ) = A ) |
| 29 |
28
|
adantl |
|- ( ( A e. _om /\ B e. A ) -> ( { B } u. ( A \ { B } ) ) = A ) |
| 30 |
|
phplem1OLD |
|- ( ( A e. _om /\ B e. A ) -> ( { A } u. ( A \ { B } ) ) = ( suc A \ { B } ) ) |
| 31 |
25 29 30
|
3brtr3d |
|- ( ( A e. _om /\ B e. A ) -> A ~~ ( suc A \ { B } ) ) |