| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phplem2OLD.1 |
|- A e. _V |
| 2 |
|
phplem2OLD.2 |
|- B e. _V |
| 3 |
|
elsuci |
|- ( B e. suc A -> ( B e. A \/ B = A ) ) |
| 4 |
1 2
|
phplem2OLD |
|- ( ( A e. _om /\ B e. A ) -> A ~~ ( suc A \ { B } ) ) |
| 5 |
1
|
enref |
|- A ~~ A |
| 6 |
|
nnord |
|- ( A e. _om -> Ord A ) |
| 7 |
|
orddif |
|- ( Ord A -> A = ( suc A \ { A } ) ) |
| 8 |
6 7
|
syl |
|- ( A e. _om -> A = ( suc A \ { A } ) ) |
| 9 |
|
sneq |
|- ( A = B -> { A } = { B } ) |
| 10 |
9
|
difeq2d |
|- ( A = B -> ( suc A \ { A } ) = ( suc A \ { B } ) ) |
| 11 |
10
|
eqcoms |
|- ( B = A -> ( suc A \ { A } ) = ( suc A \ { B } ) ) |
| 12 |
8 11
|
sylan9eq |
|- ( ( A e. _om /\ B = A ) -> A = ( suc A \ { B } ) ) |
| 13 |
5 12
|
breqtrid |
|- ( ( A e. _om /\ B = A ) -> A ~~ ( suc A \ { B } ) ) |
| 14 |
4 13
|
jaodan |
|- ( ( A e. _om /\ ( B e. A \/ B = A ) ) -> A ~~ ( suc A \ { B } ) ) |
| 15 |
3 14
|
sylan2 |
|- ( ( A e. _om /\ B e. suc A ) -> A ~~ ( suc A \ { B } ) ) |