Description: The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | phrel | |- Rel CPreHilOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phnv | |- ( x e. CPreHilOLD -> x e. NrmCVec ) |
|
2 | 1 | ssriv | |- CPreHilOLD C_ NrmCVec |
3 | nvrel | |- Rel NrmCVec |
|
4 | relss | |- ( CPreHilOLD C_ NrmCVec -> ( Rel NrmCVec -> Rel CPreHilOLD ) ) |
|
5 | 2 3 4 | mp2 | |- Rel CPreHilOLD |