| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3cn | 
							 |-  3 e. CC  | 
						
						
							| 2 | 
							
								1
							 | 
							mullidi | 
							 |-  ( 1 x. 3 ) = 3  | 
						
						
							| 3 | 
							
								
							 | 
							tru | 
							 |-  T.  | 
						
						
							| 4 | 
							
								
							 | 
							0xr | 
							 |-  0 e. RR*  | 
						
						
							| 5 | 
							
								
							 | 
							pirp | 
							 |-  _pi e. RR+  | 
						
						
							| 6 | 
							
								
							 | 
							3rp | 
							 |-  3 e. RR+  | 
						
						
							| 7 | 
							
								
							 | 
							rpdivcl | 
							 |-  ( ( _pi e. RR+ /\ 3 e. RR+ ) -> ( _pi / 3 ) e. RR+ )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							mp2an | 
							 |-  ( _pi / 3 ) e. RR+  | 
						
						
							| 9 | 
							
								
							 | 
							rpxr | 
							 |-  ( ( _pi / 3 ) e. RR+ -> ( _pi / 3 ) e. RR* )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							 |-  ( _pi / 3 ) e. RR*  | 
						
						
							| 11 | 
							
								
							 | 
							rpge0 | 
							 |-  ( ( _pi / 3 ) e. RR+ -> 0 <_ ( _pi / 3 ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							ax-mp | 
							 |-  0 <_ ( _pi / 3 )  | 
						
						
							| 13 | 
							
								
							 | 
							lbicc2 | 
							 |-  ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> 0 e. ( 0 [,] ( _pi / 3 ) ) )  | 
						
						
							| 14 | 
							
								4 10 12 13
							 | 
							mp3an | 
							 |-  0 e. ( 0 [,] ( _pi / 3 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ubicc2 | 
							 |-  ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) )  | 
						
						
							| 16 | 
							
								4 10 12 15
							 | 
							mp3an | 
							 |-  ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							pm3.2i | 
							 |-  ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							 |-  ( T. -> 0 e. RR )  | 
						
						
							| 20 | 
							
								
							 | 
							pire | 
							 |-  _pi e. RR  | 
						
						
							| 21 | 
							
								
							 | 
							3re | 
							 |-  3 e. RR  | 
						
						
							| 22 | 
							
								
							 | 
							3ne0 | 
							 |-  3 =/= 0  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							redivcli | 
							 |-  ( _pi / 3 ) e. RR  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							 |-  ( T. -> ( _pi / 3 ) e. RR )  | 
						
						
							| 25 | 
							
								
							 | 
							efcn | 
							 |-  exp e. ( CC -cn-> CC )  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							 |-  ( T. -> exp e. ( CC -cn-> CC ) )  | 
						
						
							| 27 | 
							
								
							 | 
							iccssre | 
							 |-  ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( 0 [,] ( _pi / 3 ) ) C_ RR )  | 
						
						
							| 28 | 
							
								18 23 27
							 | 
							mp2an | 
							 |-  ( 0 [,] ( _pi / 3 ) ) C_ RR  | 
						
						
							| 29 | 
							
								
							 | 
							ax-resscn | 
							 |-  RR C_ CC  | 
						
						
							| 30 | 
							
								28 29
							 | 
							sstri | 
							 |-  ( 0 [,] ( _pi / 3 ) ) C_ CC  | 
						
						
							| 31 | 
							
								
							 | 
							resmpt | 
							 |-  ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							mp1i | 
							 |-  ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							ssidd | 
							 |-  ( T. -> CC C_ CC )  | 
						
						
							| 34 | 
							
								
							 | 
							ax-icn | 
							 |-  _i e. CC  | 
						
						
							| 35 | 
							
								
							 | 
							simpr | 
							 |-  ( ( T. /\ x e. CC ) -> x e. CC )  | 
						
						
							| 36 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC )  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							sylancr | 
							 |-  ( ( T. /\ x e. CC ) -> ( _i x. x ) e. CC )  | 
						
						
							| 38 | 
							
								37
							 | 
							fmpttd | 
							 |-  ( T. -> ( x e. CC |-> ( _i x. x ) ) : CC --> CC )  | 
						
						
							| 39 | 
							
								
							 | 
							cnelprrecn | 
							 |-  CC e. { RR , CC } | 
						
						
							| 40 | 
							
								39
							 | 
							a1i | 
							 |-  ( T. -> CC e. { RR , CC } ) | 
						
						
							| 41 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 42 | 
							
								41
							 | 
							a1i | 
							 |-  ( ( T. /\ x e. CC ) -> 1 e. CC )  | 
						
						
							| 43 | 
							
								40
							 | 
							dvmptid | 
							 |-  ( T. -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) )  | 
						
						
							| 44 | 
							
								34
							 | 
							a1i | 
							 |-  ( T. -> _i e. CC )  | 
						
						
							| 45 | 
							
								40 35 42 43 44
							 | 
							dvmptcmul | 
							 |-  ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> ( _i x. 1 ) ) )  | 
						
						
							| 46 | 
							
								34
							 | 
							mulridi | 
							 |-  ( _i x. 1 ) = _i  | 
						
						
							| 47 | 
							
								46
							 | 
							mpteq2i | 
							 |-  ( x e. CC |-> ( _i x. 1 ) ) = ( x e. CC |-> _i )  | 
						
						
							| 48 | 
							
								45 47
							 | 
							eqtrdi | 
							 |-  ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> _i ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							dmeqd | 
							 |-  ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = dom ( x e. CC |-> _i ) )  | 
						
						
							| 50 | 
							
								34
							 | 
							elexi | 
							 |-  _i e. _V  | 
						
						
							| 51 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. CC |-> _i ) = ( x e. CC |-> _i )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							dmmpti | 
							 |-  dom ( x e. CC |-> _i ) = CC  | 
						
						
							| 53 | 
							
								49 52
							 | 
							eqtrdi | 
							 |-  ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC )  | 
						
						
							| 54 | 
							
								
							 | 
							dvcn | 
							 |-  ( ( ( CC C_ CC /\ ( x e. CC |-> ( _i x. x ) ) : CC --> CC /\ CC C_ CC ) /\ dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC ) -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 55 | 
							
								33 38 33 53 54
							 | 
							syl31anc | 
							 |-  ( T. -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) )  | 
						
						
							| 56 | 
							
								
							 | 
							rescncf | 
							 |-  ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) )  | 
						
						
							| 57 | 
							
								30 55 56
							 | 
							mpsyl | 
							 |-  ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) )  | 
						
						
							| 58 | 
							
								32 57
							 | 
							eqeltrrd | 
							 |-  ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) )  | 
						
						
							| 59 | 
							
								26 58
							 | 
							cncfmpt1f | 
							 |-  ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) )  | 
						
						
							| 60 | 
							
								
							 | 
							reelprrecn | 
							 |-  RR e. { RR , CC } | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							 |-  ( T. -> RR e. { RR , CC } ) | 
						
						
							| 62 | 
							
								
							 | 
							recn | 
							 |-  ( x e. RR -> x e. CC )  | 
						
						
							| 63 | 
							
								
							 | 
							efcl | 
							 |-  ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC )  | 
						
						
							| 64 | 
							
								37 63
							 | 
							syl | 
							 |-  ( ( T. /\ x e. CC ) -> ( exp ` ( _i x. x ) ) e. CC )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							sylan2 | 
							 |-  ( ( T. /\ x e. RR ) -> ( exp ` ( _i x. x ) ) e. CC )  | 
						
						
							| 66 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( ( exp ` ( _i x. x ) ) e. CC /\ _i e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC )  | 
						
						
							| 67 | 
							
								64 34 66
							 | 
							sylancl | 
							 |-  ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC )  | 
						
						
							| 68 | 
							
								62 67
							 | 
							sylan2 | 
							 |-  ( ( T. /\ x e. RR ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC )  | 
						
						
							| 69 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )  | 
						
						
							| 70 | 
							
								69
							 | 
							cnfldtopon | 
							 |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC )  | 
						
						
							| 71 | 
							
								
							 | 
							toponmax | 
							 |-  ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							mp1i | 
							 |-  ( T. -> CC e. ( TopOpen ` CCfld ) )  | 
						
						
							| 73 | 
							
								29
							 | 
							a1i | 
							 |-  ( T. -> RR C_ CC )  | 
						
						
							| 74 | 
							
								
							 | 
							dfss2 | 
							 |-  ( RR C_ CC <-> ( RR i^i CC ) = RR )  | 
						
						
							| 75 | 
							
								73 74
							 | 
							sylib | 
							 |-  ( T. -> ( RR i^i CC ) = RR )  | 
						
						
							| 76 | 
							
								34
							 | 
							a1i | 
							 |-  ( ( T. /\ x e. CC ) -> _i e. CC )  | 
						
						
							| 77 | 
							
								
							 | 
							efcl | 
							 |-  ( y e. CC -> ( exp ` y ) e. CC )  | 
						
						
							| 78 | 
							
								77
							 | 
							adantl | 
							 |-  ( ( T. /\ y e. CC ) -> ( exp ` y ) e. CC )  | 
						
						
							| 79 | 
							
								
							 | 
							dvef | 
							 |-  ( CC _D exp ) = exp  | 
						
						
							| 80 | 
							
								
							 | 
							eff | 
							 |-  exp : CC --> CC  | 
						
						
							| 81 | 
							
								80
							 | 
							a1i | 
							 |-  ( T. -> exp : CC --> CC )  | 
						
						
							| 82 | 
							
								81
							 | 
							feqmptd | 
							 |-  ( T. -> exp = ( y e. CC |-> ( exp ` y ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							oveq2d | 
							 |-  ( T. -> ( CC _D exp ) = ( CC _D ( y e. CC |-> ( exp ` y ) ) ) )  | 
						
						
							| 84 | 
							
								79 83 82
							 | 
							3eqtr3a | 
							 |-  ( T. -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							fveq2 | 
							 |-  ( y = ( _i x. x ) -> ( exp ` y ) = ( exp ` ( _i x. x ) ) )  | 
						
						
							| 86 | 
							
								40 40 37 76 78 78 48 84 85 85
							 | 
							dvmptco | 
							 |-  ( T. -> ( CC _D ( x e. CC |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) )  | 
						
						
							| 87 | 
							
								69 61 72 75 64 67 86
							 | 
							dvmptres3 | 
							 |-  ( T. -> ( RR _D ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. RR |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) )  | 
						
						
							| 88 | 
							
								28
							 | 
							a1i | 
							 |-  ( T. -> ( 0 [,] ( _pi / 3 ) ) C_ RR )  | 
						
						
							| 89 | 
							
								69
							 | 
							tgioo2 | 
							 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )  | 
						
						
							| 90 | 
							
								
							 | 
							iccntr | 
							 |-  ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) )  | 
						
						
							| 91 | 
							
								18 24 90
							 | 
							sylancr | 
							 |-  ( T. -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) )  | 
						
						
							| 92 | 
							
								61 65 68 87 88 89 69 91
							 | 
							dvmptres2 | 
							 |-  ( T. -> ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							dmeqd | 
							 |-  ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) )  | 
						
						
							| 94 | 
							
								
							 | 
							ovex | 
							 |-  ( ( exp ` ( _i x. x ) ) x. _i ) e. _V  | 
						
						
							| 95 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) )  | 
						
						
							| 96 | 
							
								94 95
							 | 
							dmmpti | 
							 |-  dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( 0 (,) ( _pi / 3 ) )  | 
						
						
							| 97 | 
							
								93 96
							 | 
							eqtrdi | 
							 |-  ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( 0 (,) ( _pi / 3 ) ) )  | 
						
						
							| 98 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 99 | 
							
								98
							 | 
							a1i | 
							 |-  ( T. -> 1 e. RR )  | 
						
						
							| 100 | 
							
								92
							 | 
							fveq1d | 
							 |-  ( T. -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) )  | 
						
						
							| 101 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = y -> ( _i x. x ) = ( _i x. y ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							fveq2d | 
							 |-  ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							oveq1d | 
							 |-  ( x = y -> ( ( exp ` ( _i x. x ) ) x. _i ) = ( ( exp ` ( _i x. y ) ) x. _i ) )  | 
						
						
							| 104 | 
							
								103 95 94
							 | 
							fvmpt3i | 
							 |-  ( y e. ( 0 (,) ( _pi / 3 ) ) -> ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) )  | 
						
						
							| 105 | 
							
								100 104
							 | 
							sylan9eq | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							fveq2d | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							ioossre | 
							 |-  ( 0 (,) ( _pi / 3 ) ) C_ RR  | 
						
						
							| 108 | 
							
								107
							 | 
							a1i | 
							 |-  ( T. -> ( 0 (,) ( _pi / 3 ) ) C_ RR )  | 
						
						
							| 109 | 
							
								108
							 | 
							sselda | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. RR )  | 
						
						
							| 110 | 
							
								109
							 | 
							recnd | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. CC )  | 
						
						
							| 111 | 
							
								
							 | 
							mulcl | 
							 |-  ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC )  | 
						
						
							| 112 | 
							
								34 110 111
							 | 
							sylancr | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( _i x. y ) e. CC )  | 
						
						
							| 113 | 
							
								
							 | 
							efcl | 
							 |-  ( ( _i x. y ) e. CC -> ( exp ` ( _i x. y ) ) e. CC )  | 
						
						
							| 114 | 
							
								112 113
							 | 
							syl | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( exp ` ( _i x. y ) ) e. CC )  | 
						
						
							| 115 | 
							
								
							 | 
							absmul | 
							 |-  ( ( ( exp ` ( _i x. y ) ) e. CC /\ _i e. CC ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) )  | 
						
						
							| 116 | 
							
								114 34 115
							 | 
							sylancl | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) )  | 
						
						
							| 117 | 
							
								
							 | 
							absefi | 
							 |-  ( y e. RR -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 )  | 
						
						
							| 118 | 
							
								109 117
							 | 
							syl | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 )  | 
						
						
							| 119 | 
							
								
							 | 
							absi | 
							 |-  ( abs ` _i ) = 1  | 
						
						
							| 120 | 
							
								119
							 | 
							a1i | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` _i ) = 1 )  | 
						
						
							| 121 | 
							
								118 120
							 | 
							oveq12d | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = ( 1 x. 1 ) )  | 
						
						
							| 122 | 
							
								41
							 | 
							mulridi | 
							 |-  ( 1 x. 1 ) = 1  | 
						
						
							| 123 | 
							
								121 122
							 | 
							eqtrdi | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = 1 )  | 
						
						
							| 124 | 
							
								106 116 123
							 | 
							3eqtrd | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = 1 )  | 
						
						
							| 125 | 
							
								
							 | 
							1le1 | 
							 |-  1 <_ 1  | 
						
						
							| 126 | 
							
								124 125
							 | 
							eqbrtrdi | 
							 |-  ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) <_ 1 )  | 
						
						
							| 127 | 
							
								19 24 59 97 99 126
							 | 
							dvlip | 
							 |-  ( ( T. /\ ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) ) -> ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) )  | 
						
						
							| 128 | 
							
								3 17 127
							 | 
							mp2an | 
							 |-  ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) )  | 
						
						
							| 129 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = 0 -> ( _i x. x ) = ( _i x. 0 ) )  | 
						
						
							| 130 | 
							
								
							 | 
							it0e0 | 
							 |-  ( _i x. 0 ) = 0  | 
						
						
							| 131 | 
							
								129 130
							 | 
							eqtrdi | 
							 |-  ( x = 0 -> ( _i x. x ) = 0 )  | 
						
						
							| 132 | 
							
								131
							 | 
							fveq2d | 
							 |-  ( x = 0 -> ( exp ` ( _i x. x ) ) = ( exp ` 0 ) )  | 
						
						
							| 133 | 
							
								
							 | 
							ef0 | 
							 |-  ( exp ` 0 ) = 1  | 
						
						
							| 134 | 
							
								132 133
							 | 
							eqtrdi | 
							 |-  ( x = 0 -> ( exp ` ( _i x. x ) ) = 1 )  | 
						
						
							| 135 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) )  | 
						
						
							| 136 | 
							
								
							 | 
							fvex | 
							 |-  ( exp ` ( _i x. x ) ) e. _V  | 
						
						
							| 137 | 
							
								134 135 136
							 | 
							fvmpt3i | 
							 |-  ( 0 e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1 )  | 
						
						
							| 138 | 
							
								14 137
							 | 
							ax-mp | 
							 |-  ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1  | 
						
						
							| 139 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = ( _pi / 3 ) -> ( _i x. x ) = ( _i x. ( _pi / 3 ) ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							fveq2d | 
							 |-  ( x = ( _pi / 3 ) -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) )  | 
						
						
							| 141 | 
							
								140 135 136
							 | 
							fvmpt3i | 
							 |-  ( ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) )  | 
						
						
							| 142 | 
							
								16 141
							 | 
							ax-mp | 
							 |-  ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) )  | 
						
						
							| 143 | 
							
								138 142
							 | 
							oveq12i | 
							 |-  ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) )  | 
						
						
							| 144 | 
							
								23
							 | 
							recni | 
							 |-  ( _pi / 3 ) e. CC  | 
						
						
							| 145 | 
							
								34 144
							 | 
							mulcli | 
							 |-  ( _i x. ( _pi / 3 ) ) e. CC  | 
						
						
							| 146 | 
							
								
							 | 
							efcl | 
							 |-  ( ( _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC )  | 
						
						
							| 147 | 
							
								145 146
							 | 
							ax-mp | 
							 |-  ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC  | 
						
						
							| 148 | 
							
								
							 | 
							negicn | 
							 |-  -u _i e. CC  | 
						
						
							| 149 | 
							
								148 144
							 | 
							mulcli | 
							 |-  ( -u _i x. ( _pi / 3 ) ) e. CC  | 
						
						
							| 150 | 
							
								
							 | 
							efcl | 
							 |-  ( ( -u _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC )  | 
						
						
							| 151 | 
							
								149 150
							 | 
							ax-mp | 
							 |-  ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC  | 
						
						
							| 152 | 
							
								
							 | 
							cosval | 
							 |-  ( ( _pi / 3 ) e. CC -> ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) )  | 
						
						
							| 153 | 
							
								144 152
							 | 
							ax-mp | 
							 |-  ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 )  | 
						
						
							| 154 | 
							
								
							 | 
							sincos3rdpi | 
							 |-  ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							simpri | 
							 |-  ( cos ` ( _pi / 3 ) ) = ( 1 / 2 )  | 
						
						
							| 156 | 
							
								153 155
							 | 
							eqtr3i | 
							 |-  ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 )  | 
						
						
							| 157 | 
							
								147 151
							 | 
							addcli | 
							 |-  ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) e. CC  | 
						
						
							| 158 | 
							
								
							 | 
							2cn | 
							 |-  2 e. CC  | 
						
						
							| 159 | 
							
								
							 | 
							2ne0 | 
							 |-  2 =/= 0  | 
						
						
							| 160 | 
							
								157 41 158 159
							 | 
							div11i | 
							 |-  ( ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) <-> ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1 )  | 
						
						
							| 161 | 
							
								156 160
							 | 
							mpbi | 
							 |-  ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1  | 
						
						
							| 162 | 
							
								41 147 151 161
							 | 
							subaddrii | 
							 |-  ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) ) = ( exp ` ( -u _i x. ( _pi / 3 ) ) )  | 
						
						
							| 163 | 
							
								
							 | 
							mulneg12 | 
							 |-  ( ( _i e. CC /\ ( _pi / 3 ) e. CC ) -> ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) ) )  | 
						
						
							| 164 | 
							
								34 144 163
							 | 
							mp2an | 
							 |-  ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) )  | 
						
						
							| 165 | 
							
								164
							 | 
							fveq2i | 
							 |-  ( exp ` ( -u _i x. ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) )  | 
						
						
							| 166 | 
							
								143 162 165
							 | 
							3eqtri | 
							 |-  ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							fveq2i | 
							 |-  ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) = ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) )  | 
						
						
							| 168 | 
							
								144
							 | 
							absnegi | 
							 |-  ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( _pi / 3 ) )  | 
						
						
							| 169 | 
							
								
							 | 
							df-neg | 
							 |-  -u ( _pi / 3 ) = ( 0 - ( _pi / 3 ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							fveq2i | 
							 |-  ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) )  | 
						
						
							| 171 | 
							
								168 170
							 | 
							eqtr3i | 
							 |-  ( abs ` ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) )  | 
						
						
							| 172 | 
							
								
							 | 
							rprege0 | 
							 |-  ( ( _pi / 3 ) e. RR+ -> ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) )  | 
						
						
							| 173 | 
							
								
							 | 
							absid | 
							 |-  ( ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) -> ( abs ` ( _pi / 3 ) ) = ( _pi / 3 ) )  | 
						
						
							| 174 | 
							
								8 172 173
							 | 
							mp2b | 
							 |-  ( abs ` ( _pi / 3 ) ) = ( _pi / 3 )  | 
						
						
							| 175 | 
							
								171 174
							 | 
							eqtr3i | 
							 |-  ( abs ` ( 0 - ( _pi / 3 ) ) ) = ( _pi / 3 )  | 
						
						
							| 176 | 
							
								175
							 | 
							oveq2i | 
							 |-  ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) = ( 1 x. ( _pi / 3 ) )  | 
						
						
							| 177 | 
							
								128 167 176
							 | 
							3brtr3i | 
							 |-  ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) <_ ( 1 x. ( _pi / 3 ) )  | 
						
						
							| 178 | 
							
								23
							 | 
							renegcli | 
							 |-  -u ( _pi / 3 ) e. RR  | 
						
						
							| 179 | 
							
								
							 | 
							absefi | 
							 |-  ( -u ( _pi / 3 ) e. RR -> ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1 )  | 
						
						
							| 180 | 
							
								178 179
							 | 
							ax-mp | 
							 |-  ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1  | 
						
						
							| 181 | 
							
								144
							 | 
							mullidi | 
							 |-  ( 1 x. ( _pi / 3 ) ) = ( _pi / 3 )  | 
						
						
							| 182 | 
							
								177 180 181
							 | 
							3brtr3i | 
							 |-  1 <_ ( _pi / 3 )  | 
						
						
							| 183 | 
							
								
							 | 
							3pos | 
							 |-  0 < 3  | 
						
						
							| 184 | 
							
								21 183
							 | 
							pm3.2i | 
							 |-  ( 3 e. RR /\ 0 < 3 )  | 
						
						
							| 185 | 
							
								
							 | 
							lemuldiv | 
							 |-  ( ( 1 e. RR /\ _pi e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) ) )  | 
						
						
							| 186 | 
							
								98 20 184 185
							 | 
							mp3an | 
							 |-  ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) )  | 
						
						
							| 187 | 
							
								182 186
							 | 
							mpbir | 
							 |-  ( 1 x. 3 ) <_ _pi  | 
						
						
							| 188 | 
							
								2 187
							 | 
							eqbrtrri | 
							 |-  3 <_ _pi  |