Step |
Hyp |
Ref |
Expression |
1 |
|
3cn |
|- 3 e. CC |
2 |
1
|
mulid2i |
|- ( 1 x. 3 ) = 3 |
3 |
|
tru |
|- T. |
4 |
|
0xr |
|- 0 e. RR* |
5 |
|
pirp |
|- _pi e. RR+ |
6 |
|
3rp |
|- 3 e. RR+ |
7 |
|
rpdivcl |
|- ( ( _pi e. RR+ /\ 3 e. RR+ ) -> ( _pi / 3 ) e. RR+ ) |
8 |
5 6 7
|
mp2an |
|- ( _pi / 3 ) e. RR+ |
9 |
|
rpxr |
|- ( ( _pi / 3 ) e. RR+ -> ( _pi / 3 ) e. RR* ) |
10 |
8 9
|
ax-mp |
|- ( _pi / 3 ) e. RR* |
11 |
|
rpge0 |
|- ( ( _pi / 3 ) e. RR+ -> 0 <_ ( _pi / 3 ) ) |
12 |
8 11
|
ax-mp |
|- 0 <_ ( _pi / 3 ) |
13 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> 0 e. ( 0 [,] ( _pi / 3 ) ) ) |
14 |
4 10 12 13
|
mp3an |
|- 0 e. ( 0 [,] ( _pi / 3 ) ) |
15 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ ( _pi / 3 ) e. RR* /\ 0 <_ ( _pi / 3 ) ) -> ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) |
16 |
4 10 12 15
|
mp3an |
|- ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) |
17 |
14 16
|
pm3.2i |
|- ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) |
18 |
|
0re |
|- 0 e. RR |
19 |
18
|
a1i |
|- ( T. -> 0 e. RR ) |
20 |
|
pire |
|- _pi e. RR |
21 |
|
3re |
|- 3 e. RR |
22 |
|
3ne0 |
|- 3 =/= 0 |
23 |
20 21 22
|
redivcli |
|- ( _pi / 3 ) e. RR |
24 |
23
|
a1i |
|- ( T. -> ( _pi / 3 ) e. RR ) |
25 |
|
efcn |
|- exp e. ( CC -cn-> CC ) |
26 |
25
|
a1i |
|- ( T. -> exp e. ( CC -cn-> CC ) ) |
27 |
|
iccssre |
|- ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( 0 [,] ( _pi / 3 ) ) C_ RR ) |
28 |
18 23 27
|
mp2an |
|- ( 0 [,] ( _pi / 3 ) ) C_ RR |
29 |
|
ax-resscn |
|- RR C_ CC |
30 |
28 29
|
sstri |
|- ( 0 [,] ( _pi / 3 ) ) C_ CC |
31 |
|
resmpt |
|- ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) ) |
32 |
30 31
|
mp1i |
|- ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) ) |
33 |
|
ssidd |
|- ( T. -> CC C_ CC ) |
34 |
|
ax-icn |
|- _i e. CC |
35 |
|
simpr |
|- ( ( T. /\ x e. CC ) -> x e. CC ) |
36 |
|
mulcl |
|- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
37 |
34 35 36
|
sylancr |
|- ( ( T. /\ x e. CC ) -> ( _i x. x ) e. CC ) |
38 |
37
|
fmpttd |
|- ( T. -> ( x e. CC |-> ( _i x. x ) ) : CC --> CC ) |
39 |
|
cnelprrecn |
|- CC e. { RR , CC } |
40 |
39
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
41 |
|
ax-1cn |
|- 1 e. CC |
42 |
41
|
a1i |
|- ( ( T. /\ x e. CC ) -> 1 e. CC ) |
43 |
40
|
dvmptid |
|- ( T. -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
44 |
34
|
a1i |
|- ( T. -> _i e. CC ) |
45 |
40 35 42 43 44
|
dvmptcmul |
|- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> ( _i x. 1 ) ) ) |
46 |
34
|
mulid1i |
|- ( _i x. 1 ) = _i |
47 |
46
|
mpteq2i |
|- ( x e. CC |-> ( _i x. 1 ) ) = ( x e. CC |-> _i ) |
48 |
45 47
|
eqtrdi |
|- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> _i ) ) |
49 |
48
|
dmeqd |
|- ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = dom ( x e. CC |-> _i ) ) |
50 |
34
|
elexi |
|- _i e. _V |
51 |
|
eqid |
|- ( x e. CC |-> _i ) = ( x e. CC |-> _i ) |
52 |
50 51
|
dmmpti |
|- dom ( x e. CC |-> _i ) = CC |
53 |
49 52
|
eqtrdi |
|- ( T. -> dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC ) |
54 |
|
dvcn |
|- ( ( ( CC C_ CC /\ ( x e. CC |-> ( _i x. x ) ) : CC --> CC /\ CC C_ CC ) /\ dom ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = CC ) -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
55 |
33 38 33 53 54
|
syl31anc |
|- ( T. -> ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) ) |
56 |
|
rescncf |
|- ( ( 0 [,] ( _pi / 3 ) ) C_ CC -> ( ( x e. CC |-> ( _i x. x ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) ) |
57 |
30 55 56
|
mpsyl |
|- ( T. -> ( ( x e. CC |-> ( _i x. x ) ) |` ( 0 [,] ( _pi / 3 ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
58 |
32 57
|
eqeltrrd |
|- ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( _i x. x ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
59 |
26 58
|
cncfmpt1f |
|- ( T. -> ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) e. ( ( 0 [,] ( _pi / 3 ) ) -cn-> CC ) ) |
60 |
|
reelprrecn |
|- RR e. { RR , CC } |
61 |
60
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
62 |
|
recn |
|- ( x e. RR -> x e. CC ) |
63 |
|
efcl |
|- ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
64 |
37 63
|
syl |
|- ( ( T. /\ x e. CC ) -> ( exp ` ( _i x. x ) ) e. CC ) |
65 |
62 64
|
sylan2 |
|- ( ( T. /\ x e. RR ) -> ( exp ` ( _i x. x ) ) e. CC ) |
66 |
|
mulcl |
|- ( ( ( exp ` ( _i x. x ) ) e. CC /\ _i e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
67 |
64 34 66
|
sylancl |
|- ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
68 |
62 67
|
sylan2 |
|- ( ( T. /\ x e. RR ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
69 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
70 |
69
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
71 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
72 |
70 71
|
mp1i |
|- ( T. -> CC e. ( TopOpen ` CCfld ) ) |
73 |
29
|
a1i |
|- ( T. -> RR C_ CC ) |
74 |
|
df-ss |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
75 |
73 74
|
sylib |
|- ( T. -> ( RR i^i CC ) = RR ) |
76 |
34
|
a1i |
|- ( ( T. /\ x e. CC ) -> _i e. CC ) |
77 |
|
efcl |
|- ( y e. CC -> ( exp ` y ) e. CC ) |
78 |
77
|
adantl |
|- ( ( T. /\ y e. CC ) -> ( exp ` y ) e. CC ) |
79 |
|
dvef |
|- ( CC _D exp ) = exp |
80 |
|
eff |
|- exp : CC --> CC |
81 |
80
|
a1i |
|- ( T. -> exp : CC --> CC ) |
82 |
81
|
feqmptd |
|- ( T. -> exp = ( y e. CC |-> ( exp ` y ) ) ) |
83 |
82
|
oveq2d |
|- ( T. -> ( CC _D exp ) = ( CC _D ( y e. CC |-> ( exp ` y ) ) ) ) |
84 |
79 83 82
|
3eqtr3a |
|- ( T. -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) |
85 |
|
fveq2 |
|- ( y = ( _i x. x ) -> ( exp ` y ) = ( exp ` ( _i x. x ) ) ) |
86 |
40 40 37 76 78 78 48 84 85 85
|
dvmptco |
|- ( T. -> ( CC _D ( x e. CC |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
87 |
69 61 72 75 64 67 86
|
dvmptres3 |
|- ( T. -> ( RR _D ( x e. RR |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. RR |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
88 |
28
|
a1i |
|- ( T. -> ( 0 [,] ( _pi / 3 ) ) C_ RR ) |
89 |
69
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
90 |
|
iccntr |
|- ( ( 0 e. RR /\ ( _pi / 3 ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
91 |
18 24 90
|
sylancr |
|- ( T. -> ( ( int ` ( topGen ` ran (,) ) ) ` ( 0 [,] ( _pi / 3 ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
92 |
61 65 68 87 88 89 69 91
|
dvmptres2 |
|- ( T. -> ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
93 |
92
|
dmeqd |
|- ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
94 |
|
ovex |
|- ( ( exp ` ( _i x. x ) ) x. _i ) e. _V |
95 |
|
eqid |
|- ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) |
96 |
94 95
|
dmmpti |
|- dom ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) = ( 0 (,) ( _pi / 3 ) ) |
97 |
93 96
|
eqtrdi |
|- ( T. -> dom ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) = ( 0 (,) ( _pi / 3 ) ) ) |
98 |
|
1re |
|- 1 e. RR |
99 |
98
|
a1i |
|- ( T. -> 1 e. RR ) |
100 |
92
|
fveq1d |
|- ( T. -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) ) |
101 |
|
oveq2 |
|- ( x = y -> ( _i x. x ) = ( _i x. y ) ) |
102 |
101
|
fveq2d |
|- ( x = y -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. y ) ) ) |
103 |
102
|
oveq1d |
|- ( x = y -> ( ( exp ` ( _i x. x ) ) x. _i ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
104 |
103 95 94
|
fvmpt3i |
|- ( y e. ( 0 (,) ( _pi / 3 ) ) -> ( ( x e. ( 0 (,) ( _pi / 3 ) ) |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
105 |
100 104
|
sylan9eq |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) = ( ( exp ` ( _i x. y ) ) x. _i ) ) |
106 |
105
|
fveq2d |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) ) |
107 |
|
ioossre |
|- ( 0 (,) ( _pi / 3 ) ) C_ RR |
108 |
107
|
a1i |
|- ( T. -> ( 0 (,) ( _pi / 3 ) ) C_ RR ) |
109 |
108
|
sselda |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. RR ) |
110 |
109
|
recnd |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> y e. CC ) |
111 |
|
mulcl |
|- ( ( _i e. CC /\ y e. CC ) -> ( _i x. y ) e. CC ) |
112 |
34 110 111
|
sylancr |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( _i x. y ) e. CC ) |
113 |
|
efcl |
|- ( ( _i x. y ) e. CC -> ( exp ` ( _i x. y ) ) e. CC ) |
114 |
112 113
|
syl |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( exp ` ( _i x. y ) ) e. CC ) |
115 |
|
absmul |
|- ( ( ( exp ` ( _i x. y ) ) e. CC /\ _i e. CC ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) ) |
116 |
114 34 115
|
sylancl |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( exp ` ( _i x. y ) ) x. _i ) ) = ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) ) |
117 |
|
absefi |
|- ( y e. RR -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 ) |
118 |
109 117
|
syl |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( exp ` ( _i x. y ) ) ) = 1 ) |
119 |
|
absi |
|- ( abs ` _i ) = 1 |
120 |
119
|
a1i |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` _i ) = 1 ) |
121 |
118 120
|
oveq12d |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = ( 1 x. 1 ) ) |
122 |
41
|
mulid1i |
|- ( 1 x. 1 ) = 1 |
123 |
121 122
|
eqtrdi |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( ( abs ` ( exp ` ( _i x. y ) ) ) x. ( abs ` _i ) ) = 1 ) |
124 |
106 116 123
|
3eqtrd |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) = 1 ) |
125 |
|
1le1 |
|- 1 <_ 1 |
126 |
124 125
|
eqbrtrdi |
|- ( ( T. /\ y e. ( 0 (,) ( _pi / 3 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ) ` y ) ) <_ 1 ) |
127 |
19 24 59 97 99 126
|
dvlip |
|- ( ( T. /\ ( 0 e. ( 0 [,] ( _pi / 3 ) ) /\ ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) ) ) -> ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) ) |
128 |
3 17 127
|
mp2an |
|- ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) <_ ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) |
129 |
|
oveq2 |
|- ( x = 0 -> ( _i x. x ) = ( _i x. 0 ) ) |
130 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
131 |
129 130
|
eqtrdi |
|- ( x = 0 -> ( _i x. x ) = 0 ) |
132 |
131
|
fveq2d |
|- ( x = 0 -> ( exp ` ( _i x. x ) ) = ( exp ` 0 ) ) |
133 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
134 |
132 133
|
eqtrdi |
|- ( x = 0 -> ( exp ` ( _i x. x ) ) = 1 ) |
135 |
|
eqid |
|- ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) = ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) |
136 |
|
fvex |
|- ( exp ` ( _i x. x ) ) e. _V |
137 |
134 135 136
|
fvmpt3i |
|- ( 0 e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1 ) |
138 |
14 137
|
ax-mp |
|- ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) = 1 |
139 |
|
oveq2 |
|- ( x = ( _pi / 3 ) -> ( _i x. x ) = ( _i x. ( _pi / 3 ) ) ) |
140 |
139
|
fveq2d |
|- ( x = ( _pi / 3 ) -> ( exp ` ( _i x. x ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
141 |
140 135 136
|
fvmpt3i |
|- ( ( _pi / 3 ) e. ( 0 [,] ( _pi / 3 ) ) -> ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
142 |
16 141
|
ax-mp |
|- ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) = ( exp ` ( _i x. ( _pi / 3 ) ) ) |
143 |
138 142
|
oveq12i |
|- ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) ) |
144 |
23
|
recni |
|- ( _pi / 3 ) e. CC |
145 |
34 144
|
mulcli |
|- ( _i x. ( _pi / 3 ) ) e. CC |
146 |
|
efcl |
|- ( ( _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC ) |
147 |
145 146
|
ax-mp |
|- ( exp ` ( _i x. ( _pi / 3 ) ) ) e. CC |
148 |
|
negicn |
|- -u _i e. CC |
149 |
148 144
|
mulcli |
|- ( -u _i x. ( _pi / 3 ) ) e. CC |
150 |
|
efcl |
|- ( ( -u _i x. ( _pi / 3 ) ) e. CC -> ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC ) |
151 |
149 150
|
ax-mp |
|- ( exp ` ( -u _i x. ( _pi / 3 ) ) ) e. CC |
152 |
|
cosval |
|- ( ( _pi / 3 ) e. CC -> ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) ) |
153 |
144 152
|
ax-mp |
|- ( cos ` ( _pi / 3 ) ) = ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) |
154 |
|
sincos3rdpi |
|- ( ( sin ` ( _pi / 3 ) ) = ( ( sqrt ` 3 ) / 2 ) /\ ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) ) |
155 |
154
|
simpri |
|- ( cos ` ( _pi / 3 ) ) = ( 1 / 2 ) |
156 |
153 155
|
eqtr3i |
|- ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) |
157 |
147 151
|
addcli |
|- ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) e. CC |
158 |
|
2cn |
|- 2 e. CC |
159 |
|
2ne0 |
|- 2 =/= 0 |
160 |
157 41 158 159
|
div11i |
|- ( ( ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) / 2 ) = ( 1 / 2 ) <-> ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1 ) |
161 |
156 160
|
mpbi |
|- ( ( exp ` ( _i x. ( _pi / 3 ) ) ) + ( exp ` ( -u _i x. ( _pi / 3 ) ) ) ) = 1 |
162 |
41 147 151 161
|
subaddrii |
|- ( 1 - ( exp ` ( _i x. ( _pi / 3 ) ) ) ) = ( exp ` ( -u _i x. ( _pi / 3 ) ) ) |
163 |
|
mulneg12 |
|- ( ( _i e. CC /\ ( _pi / 3 ) e. CC ) -> ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) ) ) |
164 |
34 144 163
|
mp2an |
|- ( -u _i x. ( _pi / 3 ) ) = ( _i x. -u ( _pi / 3 ) ) |
165 |
164
|
fveq2i |
|- ( exp ` ( -u _i x. ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) ) |
166 |
143 162 165
|
3eqtri |
|- ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) = ( exp ` ( _i x. -u ( _pi / 3 ) ) ) |
167 |
166
|
fveq2i |
|- ( abs ` ( ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` 0 ) - ( ( x e. ( 0 [,] ( _pi / 3 ) ) |-> ( exp ` ( _i x. x ) ) ) ` ( _pi / 3 ) ) ) ) = ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) |
168 |
144
|
absnegi |
|- ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( _pi / 3 ) ) |
169 |
|
df-neg |
|- -u ( _pi / 3 ) = ( 0 - ( _pi / 3 ) ) |
170 |
169
|
fveq2i |
|- ( abs ` -u ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) ) |
171 |
168 170
|
eqtr3i |
|- ( abs ` ( _pi / 3 ) ) = ( abs ` ( 0 - ( _pi / 3 ) ) ) |
172 |
|
rprege0 |
|- ( ( _pi / 3 ) e. RR+ -> ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) ) |
173 |
|
absid |
|- ( ( ( _pi / 3 ) e. RR /\ 0 <_ ( _pi / 3 ) ) -> ( abs ` ( _pi / 3 ) ) = ( _pi / 3 ) ) |
174 |
8 172 173
|
mp2b |
|- ( abs ` ( _pi / 3 ) ) = ( _pi / 3 ) |
175 |
171 174
|
eqtr3i |
|- ( abs ` ( 0 - ( _pi / 3 ) ) ) = ( _pi / 3 ) |
176 |
175
|
oveq2i |
|- ( 1 x. ( abs ` ( 0 - ( _pi / 3 ) ) ) ) = ( 1 x. ( _pi / 3 ) ) |
177 |
128 167 176
|
3brtr3i |
|- ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) <_ ( 1 x. ( _pi / 3 ) ) |
178 |
23
|
renegcli |
|- -u ( _pi / 3 ) e. RR |
179 |
|
absefi |
|- ( -u ( _pi / 3 ) e. RR -> ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1 ) |
180 |
178 179
|
ax-mp |
|- ( abs ` ( exp ` ( _i x. -u ( _pi / 3 ) ) ) ) = 1 |
181 |
144
|
mulid2i |
|- ( 1 x. ( _pi / 3 ) ) = ( _pi / 3 ) |
182 |
177 180 181
|
3brtr3i |
|- 1 <_ ( _pi / 3 ) |
183 |
|
3pos |
|- 0 < 3 |
184 |
21 183
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
185 |
|
lemuldiv |
|- ( ( 1 e. RR /\ _pi e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) ) ) |
186 |
98 20 184 185
|
mp3an |
|- ( ( 1 x. 3 ) <_ _pi <-> 1 <_ ( _pi / 3 ) ) |
187 |
182 186
|
mpbir |
|- ( 1 x. 3 ) <_ _pi |
188 |
2 187
|
eqbrtrri |
|- 3 <_ _pi |