Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ A e. ( `' sin " { 0 } ) ) ) |
2 |
|
sinf |
|- sin : CC --> CC |
3 |
|
ffn |
|- ( sin : CC --> CC -> sin Fn CC ) |
4 |
|
fniniseg |
|- ( sin Fn CC -> ( A e. ( `' sin " { 0 } ) <-> ( A e. CC /\ ( sin ` A ) = 0 ) ) ) |
5 |
2 3 4
|
mp2b |
|- ( A e. ( `' sin " { 0 } ) <-> ( A e. CC /\ ( sin ` A ) = 0 ) ) |
6 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
7 |
6
|
biantrurd |
|- ( A e. RR+ -> ( ( sin ` A ) = 0 <-> ( A e. CC /\ ( sin ` A ) = 0 ) ) ) |
8 |
5 7
|
bitr4id |
|- ( A e. RR+ -> ( A e. ( `' sin " { 0 } ) <-> ( sin ` A ) = 0 ) ) |
9 |
8
|
pm5.32i |
|- ( ( A e. RR+ /\ A e. ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ ( sin ` A ) = 0 ) ) |
10 |
1 9
|
bitri |
|- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ ( sin ` A ) = 0 ) ) |