Step |
Hyp |
Ref |
Expression |
1 |
|
pilem2.1 |
|- ( ph -> A e. ( 2 (,) 4 ) ) |
2 |
|
pilem2.2 |
|- ( ph -> B e. RR+ ) |
3 |
|
pilem2.3 |
|- ( ph -> ( sin ` A ) = 0 ) |
4 |
|
pilem2.4 |
|- ( ph -> ( sin ` B ) = 0 ) |
5 |
|
df-pi |
|- _pi = inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) |
6 |
|
inss1 |
|- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR+ |
7 |
|
rpssre |
|- RR+ C_ RR |
8 |
6 7
|
sstri |
|- ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR |
9 |
8
|
a1i |
|- ( ph -> ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR ) |
10 |
|
0re |
|- 0 e. RR |
11 |
|
elinel1 |
|- ( y e. ( RR+ i^i ( `' sin " { 0 } ) ) -> y e. RR+ ) |
12 |
11
|
rpge0d |
|- ( y e. ( RR+ i^i ( `' sin " { 0 } ) ) -> 0 <_ y ) |
13 |
12
|
rgen |
|- A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ y |
14 |
|
breq1 |
|- ( x = 0 -> ( x <_ y <-> 0 <_ y ) ) |
15 |
14
|
ralbidv |
|- ( x = 0 -> ( A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y <-> A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ y ) ) |
16 |
15
|
rspcev |
|- ( ( 0 e. RR /\ A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) 0 <_ y ) -> E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) |
17 |
10 13 16
|
mp2an |
|- E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y |
18 |
17
|
a1i |
|- ( ph -> E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) |
19 |
|
2re |
|- 2 e. RR |
20 |
2
|
rpred |
|- ( ph -> B e. RR ) |
21 |
|
remulcl |
|- ( ( 2 e. RR /\ B e. RR ) -> ( 2 x. B ) e. RR ) |
22 |
19 20 21
|
sylancr |
|- ( ph -> ( 2 x. B ) e. RR ) |
23 |
|
elioore |
|- ( A e. ( 2 (,) 4 ) -> A e. RR ) |
24 |
1 23
|
syl |
|- ( ph -> A e. RR ) |
25 |
22 24
|
resubcld |
|- ( ph -> ( ( 2 x. B ) - A ) e. RR ) |
26 |
|
4re |
|- 4 e. RR |
27 |
26
|
a1i |
|- ( ph -> 4 e. RR ) |
28 |
|
eliooord |
|- ( A e. ( 2 (,) 4 ) -> ( 2 < A /\ A < 4 ) ) |
29 |
1 28
|
syl |
|- ( ph -> ( 2 < A /\ A < 4 ) ) |
30 |
29
|
simprd |
|- ( ph -> A < 4 ) |
31 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
32 |
19
|
a1i |
|- ( ph -> 2 e. RR ) |
33 |
|
0red |
|- ( ph -> 0 e. RR ) |
34 |
|
2pos |
|- 0 < 2 |
35 |
34
|
a1i |
|- ( ph -> 0 < 2 ) |
36 |
29
|
simpld |
|- ( ph -> 2 < A ) |
37 |
33 32 24 35 36
|
lttrd |
|- ( ph -> 0 < A ) |
38 |
24 37
|
elrpd |
|- ( ph -> A e. RR+ ) |
39 |
|
pilem1 |
|- ( A e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( A e. RR+ /\ ( sin ` A ) = 0 ) ) |
40 |
38 3 39
|
sylanbrc |
|- ( ph -> A e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
41 |
40
|
ne0d |
|- ( ph -> ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) ) |
42 |
|
infrecl |
|- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
43 |
8 17 42
|
mp3an13 |
|- ( ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
44 |
41 43
|
syl |
|- ( ph -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) e. RR ) |
45 |
|
pilem1 |
|- ( x e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( x e. RR+ /\ ( sin ` x ) = 0 ) ) |
46 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
47 |
46
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
48 |
|
letric |
|- ( ( 2 e. RR /\ x e. RR ) -> ( 2 <_ x \/ x <_ 2 ) ) |
49 |
19 47 48
|
sylancr |
|- ( ( ph /\ x e. RR+ ) -> ( 2 <_ x \/ x <_ 2 ) ) |
50 |
49
|
ord |
|- ( ( ph /\ x e. RR+ ) -> ( -. 2 <_ x -> x <_ 2 ) ) |
51 |
46
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> x e. RR ) |
52 |
|
rpgt0 |
|- ( x e. RR+ -> 0 < x ) |
53 |
52
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> 0 < x ) |
54 |
|
simpr |
|- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> x <_ 2 ) |
55 |
|
0xr |
|- 0 e. RR* |
56 |
|
elioc2 |
|- ( ( 0 e. RR* /\ 2 e. RR ) -> ( x e. ( 0 (,] 2 ) <-> ( x e. RR /\ 0 < x /\ x <_ 2 ) ) ) |
57 |
55 19 56
|
mp2an |
|- ( x e. ( 0 (,] 2 ) <-> ( x e. RR /\ 0 < x /\ x <_ 2 ) ) |
58 |
51 53 54 57
|
syl3anbrc |
|- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> x e. ( 0 (,] 2 ) ) |
59 |
|
sin02gt0 |
|- ( x e. ( 0 (,] 2 ) -> 0 < ( sin ` x ) ) |
60 |
58 59
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> 0 < ( sin ` x ) ) |
61 |
60
|
gt0ne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ x <_ 2 ) -> ( sin ` x ) =/= 0 ) |
62 |
61
|
ex |
|- ( ( ph /\ x e. RR+ ) -> ( x <_ 2 -> ( sin ` x ) =/= 0 ) ) |
63 |
50 62
|
syld |
|- ( ( ph /\ x e. RR+ ) -> ( -. 2 <_ x -> ( sin ` x ) =/= 0 ) ) |
64 |
63
|
necon4bd |
|- ( ( ph /\ x e. RR+ ) -> ( ( sin ` x ) = 0 -> 2 <_ x ) ) |
65 |
64
|
expimpd |
|- ( ph -> ( ( x e. RR+ /\ ( sin ` x ) = 0 ) -> 2 <_ x ) ) |
66 |
45 65
|
syl5bi |
|- ( ph -> ( x e. ( RR+ i^i ( `' sin " { 0 } ) ) -> 2 <_ x ) ) |
67 |
66
|
ralrimiv |
|- ( ph -> A. x e. ( RR+ i^i ( `' sin " { 0 } ) ) 2 <_ x ) |
68 |
|
infregelb |
|- ( ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ ( RR+ i^i ( `' sin " { 0 } ) ) =/= (/) /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y ) /\ 2 e. RR ) -> ( 2 <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. x e. ( RR+ i^i ( `' sin " { 0 } ) ) 2 <_ x ) ) |
69 |
9 41 18 32 68
|
syl31anc |
|- ( ph -> ( 2 <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <-> A. x e. ( RR+ i^i ( `' sin " { 0 } ) ) 2 <_ x ) ) |
70 |
67 69
|
mpbird |
|- ( ph -> 2 <_ inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) ) |
71 |
|
pilem1 |
|- ( B e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( B e. RR+ /\ ( sin ` B ) = 0 ) ) |
72 |
2 4 71
|
sylanbrc |
|- ( ph -> B e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
73 |
|
infrelb |
|- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y /\ B e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ B ) |
74 |
9 18 72 73
|
syl3anc |
|- ( ph -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ B ) |
75 |
32 44 20 70 74
|
letrd |
|- ( ph -> 2 <_ B ) |
76 |
19 34
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
77 |
76
|
a1i |
|- ( ph -> ( 2 e. RR /\ 0 < 2 ) ) |
78 |
|
lemul2 |
|- ( ( 2 e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 2 <_ B <-> ( 2 x. 2 ) <_ ( 2 x. B ) ) ) |
79 |
32 20 77 78
|
syl3anc |
|- ( ph -> ( 2 <_ B <-> ( 2 x. 2 ) <_ ( 2 x. B ) ) ) |
80 |
75 79
|
mpbid |
|- ( ph -> ( 2 x. 2 ) <_ ( 2 x. B ) ) |
81 |
31 80
|
eqbrtrrid |
|- ( ph -> 4 <_ ( 2 x. B ) ) |
82 |
24 27 22 30 81
|
ltletrd |
|- ( ph -> A < ( 2 x. B ) ) |
83 |
24 22
|
posdifd |
|- ( ph -> ( A < ( 2 x. B ) <-> 0 < ( ( 2 x. B ) - A ) ) ) |
84 |
82 83
|
mpbid |
|- ( ph -> 0 < ( ( 2 x. B ) - A ) ) |
85 |
25 84
|
elrpd |
|- ( ph -> ( ( 2 x. B ) - A ) e. RR+ ) |
86 |
22
|
recnd |
|- ( ph -> ( 2 x. B ) e. CC ) |
87 |
24
|
recnd |
|- ( ph -> A e. CC ) |
88 |
|
sinsub |
|- ( ( ( 2 x. B ) e. CC /\ A e. CC ) -> ( sin ` ( ( 2 x. B ) - A ) ) = ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) ) |
89 |
86 87 88
|
syl2anc |
|- ( ph -> ( sin ` ( ( 2 x. B ) - A ) ) = ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) ) |
90 |
20
|
recnd |
|- ( ph -> B e. CC ) |
91 |
|
sin2t |
|- ( B e. CC -> ( sin ` ( 2 x. B ) ) = ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) ) |
92 |
90 91
|
syl |
|- ( ph -> ( sin ` ( 2 x. B ) ) = ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) ) |
93 |
4
|
oveq1d |
|- ( ph -> ( ( sin ` B ) x. ( cos ` B ) ) = ( 0 x. ( cos ` B ) ) ) |
94 |
90
|
coscld |
|- ( ph -> ( cos ` B ) e. CC ) |
95 |
94
|
mul02d |
|- ( ph -> ( 0 x. ( cos ` B ) ) = 0 ) |
96 |
93 95
|
eqtrd |
|- ( ph -> ( ( sin ` B ) x. ( cos ` B ) ) = 0 ) |
97 |
96
|
oveq2d |
|- ( ph -> ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) = ( 2 x. 0 ) ) |
98 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
99 |
97 98
|
eqtrdi |
|- ( ph -> ( 2 x. ( ( sin ` B ) x. ( cos ` B ) ) ) = 0 ) |
100 |
92 99
|
eqtrd |
|- ( ph -> ( sin ` ( 2 x. B ) ) = 0 ) |
101 |
100
|
oveq1d |
|- ( ph -> ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) = ( 0 x. ( cos ` A ) ) ) |
102 |
87
|
coscld |
|- ( ph -> ( cos ` A ) e. CC ) |
103 |
102
|
mul02d |
|- ( ph -> ( 0 x. ( cos ` A ) ) = 0 ) |
104 |
101 103
|
eqtrd |
|- ( ph -> ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) = 0 ) |
105 |
3
|
oveq2d |
|- ( ph -> ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) = ( ( cos ` ( 2 x. B ) ) x. 0 ) ) |
106 |
86
|
coscld |
|- ( ph -> ( cos ` ( 2 x. B ) ) e. CC ) |
107 |
106
|
mul01d |
|- ( ph -> ( ( cos ` ( 2 x. B ) ) x. 0 ) = 0 ) |
108 |
105 107
|
eqtrd |
|- ( ph -> ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) = 0 ) |
109 |
104 108
|
oveq12d |
|- ( ph -> ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) = ( 0 - 0 ) ) |
110 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
111 |
109 110
|
eqtrdi |
|- ( ph -> ( ( ( sin ` ( 2 x. B ) ) x. ( cos ` A ) ) - ( ( cos ` ( 2 x. B ) ) x. ( sin ` A ) ) ) = 0 ) |
112 |
89 111
|
eqtrd |
|- ( ph -> ( sin ` ( ( 2 x. B ) - A ) ) = 0 ) |
113 |
|
pilem1 |
|- ( ( ( 2 x. B ) - A ) e. ( RR+ i^i ( `' sin " { 0 } ) ) <-> ( ( ( 2 x. B ) - A ) e. RR+ /\ ( sin ` ( ( 2 x. B ) - A ) ) = 0 ) ) |
114 |
85 112 113
|
sylanbrc |
|- ( ph -> ( ( 2 x. B ) - A ) e. ( RR+ i^i ( `' sin " { 0 } ) ) ) |
115 |
|
infrelb |
|- ( ( ( RR+ i^i ( `' sin " { 0 } ) ) C_ RR /\ E. x e. RR A. y e. ( RR+ i^i ( `' sin " { 0 } ) ) x <_ y /\ ( ( 2 x. B ) - A ) e. ( RR+ i^i ( `' sin " { 0 } ) ) ) -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ ( ( 2 x. B ) - A ) ) |
116 |
9 18 114 115
|
syl3anc |
|- ( ph -> inf ( ( RR+ i^i ( `' sin " { 0 } ) ) , RR , < ) <_ ( ( 2 x. B ) - A ) ) |
117 |
5 116
|
eqbrtrid |
|- ( ph -> _pi <_ ( ( 2 x. B ) - A ) ) |
118 |
5 44
|
eqeltrid |
|- ( ph -> _pi e. RR ) |
119 |
|
leaddsub |
|- ( ( _pi e. RR /\ A e. RR /\ ( 2 x. B ) e. RR ) -> ( ( _pi + A ) <_ ( 2 x. B ) <-> _pi <_ ( ( 2 x. B ) - A ) ) ) |
120 |
118 24 22 119
|
syl3anc |
|- ( ph -> ( ( _pi + A ) <_ ( 2 x. B ) <-> _pi <_ ( ( 2 x. B ) - A ) ) ) |
121 |
117 120
|
mpbird |
|- ( ph -> ( _pi + A ) <_ ( 2 x. B ) ) |
122 |
118 24
|
readdcld |
|- ( ph -> ( _pi + A ) e. RR ) |
123 |
|
ledivmul |
|- ( ( ( _pi + A ) e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( _pi + A ) / 2 ) <_ B <-> ( _pi + A ) <_ ( 2 x. B ) ) ) |
124 |
122 20 77 123
|
syl3anc |
|- ( ph -> ( ( ( _pi + A ) / 2 ) <_ B <-> ( _pi + A ) <_ ( 2 x. B ) ) ) |
125 |
121 124
|
mpbird |
|- ( ph -> ( ( _pi + A ) / 2 ) <_ B ) |