| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pimiooltgt.1 |
|- F/ x ph |
| 2 |
|
pimiooltgt.2 |
|- ( ph -> L e. RR* ) |
| 3 |
|
pimiooltgt.3 |
|- ( ph -> R e. RR* ) |
| 4 |
|
pimiooltgt.4 |
|- ( ( ph /\ x e. A ) -> B e. RR* ) |
| 5 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ B e. ( L (,) R ) ) -> L e. RR* ) |
| 6 |
3
|
3ad2ant1 |
|- ( ( ph /\ x e. A /\ B e. ( L (,) R ) ) -> R e. RR* ) |
| 7 |
|
simp3 |
|- ( ( ph /\ x e. A /\ B e. ( L (,) R ) ) -> B e. ( L (,) R ) ) |
| 8 |
5 6 7
|
iooltubd |
|- ( ( ph /\ x e. A /\ B e. ( L (,) R ) ) -> B < R ) |
| 9 |
8
|
3exp |
|- ( ph -> ( x e. A -> ( B e. ( L (,) R ) -> B < R ) ) ) |
| 10 |
1 9
|
ralrimi |
|- ( ph -> A. x e. A ( B e. ( L (,) R ) -> B < R ) ) |
| 11 |
10
|
ss2rabd |
|- ( ph -> { x e. A | B e. ( L (,) R ) } C_ { x e. A | B < R } ) |
| 12 |
5 6 7
|
ioogtlbd |
|- ( ( ph /\ x e. A /\ B e. ( L (,) R ) ) -> L < B ) |
| 13 |
12
|
3exp |
|- ( ph -> ( x e. A -> ( B e. ( L (,) R ) -> L < B ) ) ) |
| 14 |
1 13
|
ralrimi |
|- ( ph -> A. x e. A ( B e. ( L (,) R ) -> L < B ) ) |
| 15 |
14
|
ss2rabd |
|- ( ph -> { x e. A | B e. ( L (,) R ) } C_ { x e. A | L < B } ) |
| 16 |
11 15
|
ssind |
|- ( ph -> { x e. A | B e. ( L (,) R ) } C_ ( { x e. A | B < R } i^i { x e. A | L < B } ) ) |
| 17 |
|
nfrab1 |
|- F/_ x { x e. A | B < R } |
| 18 |
|
nfrab1 |
|- F/_ x { x e. A | L < B } |
| 19 |
17 18
|
nfin |
|- F/_ x ( { x e. A | B < R } i^i { x e. A | L < B } ) |
| 20 |
|
nfrab1 |
|- F/_ x { x e. A | B e. ( L (,) R ) } |
| 21 |
|
elinel1 |
|- ( x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) -> x e. { x e. A | B < R } ) |
| 22 |
|
rabidim1 |
|- ( x e. { x e. A | B < R } -> x e. A ) |
| 23 |
21 22
|
syl |
|- ( x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) -> x e. A ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> x e. A ) |
| 25 |
2
|
adantr |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> L e. RR* ) |
| 26 |
3
|
adantr |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> R e. RR* ) |
| 27 |
23 4
|
sylan2 |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> B e. RR* ) |
| 28 |
|
mnfxr |
|- -oo e. RR* |
| 29 |
28
|
a1i |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> -oo e. RR* ) |
| 30 |
25
|
mnfled |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> -oo <_ L ) |
| 31 |
|
elinel2 |
|- ( x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) -> x e. { x e. A | L < B } ) |
| 32 |
|
rabidim2 |
|- ( x e. { x e. A | L < B } -> L < B ) |
| 33 |
31 32
|
syl |
|- ( x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) -> L < B ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> L < B ) |
| 35 |
29 25 27 30 34
|
xrlelttrd |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> -oo < B ) |
| 36 |
29 27 35
|
xrgtned |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> B =/= -oo ) |
| 37 |
|
pnfxr |
|- +oo e. RR* |
| 38 |
37
|
a1i |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> +oo e. RR* ) |
| 39 |
|
rabidim2 |
|- ( x e. { x e. A | B < R } -> B < R ) |
| 40 |
21 39
|
syl |
|- ( x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) -> B < R ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> B < R ) |
| 42 |
26
|
pnfged |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> R <_ +oo ) |
| 43 |
27 26 38 41 42
|
xrltletrd |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> B < +oo ) |
| 44 |
27 38 43
|
xrltned |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> B =/= +oo ) |
| 45 |
27 36 44
|
xrred |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> B e. RR ) |
| 46 |
25 26 45 34 41
|
eliood |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> B e. ( L (,) R ) ) |
| 47 |
24 46
|
rabidd |
|- ( ( ph /\ x e. ( { x e. A | B < R } i^i { x e. A | L < B } ) ) -> x e. { x e. A | B e. ( L (,) R ) } ) |
| 48 |
1 19 20 47
|
ssdf2 |
|- ( ph -> ( { x e. A | B < R } i^i { x e. A | L < B } ) C_ { x e. A | B e. ( L (,) R ) } ) |
| 49 |
16 48
|
eqssd |
|- ( ph -> { x e. A | B e. ( L (,) R ) } = ( { x e. A | B < R } i^i { x e. A | L < B } ) ) |