| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pimxrneun.1 | 
							 |-  F/ x ph  | 
						
						
							| 2 | 
							
								
							 | 
							pimxrneun.2 | 
							 |-  ( ( ph /\ x e. A ) -> B e. RR* )  | 
						
						
							| 3 | 
							
								
							 | 
							pimxrneun.3 | 
							 |-  ( ( ph /\ x e. A ) -> C e. RR* )  | 
						
						
							| 4 | 
							
								
							 | 
							nfrab1 | 
							 |-  F/_ x { x e. A | B < C } | 
						
						
							| 5 | 
							
								
							 | 
							nfrab1 | 
							 |-  F/_ x { x e. A | C < B } | 
						
						
							| 6 | 
							
								4 5
							 | 
							nfun | 
							 |-  F/_ x ( { x e. A | B < C } u. { x e. A | C < B } ) | 
						
						
							| 7 | 
							
								
							 | 
							simpl | 
							 |-  ( ( x e. A /\ B < C ) -> x e. A )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							 |-  ( ( x e. A /\ B < C ) -> B < C )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							jca | 
							 |-  ( ( x e. A /\ B < C ) -> ( x e. A /\ B < C ) )  | 
						
						
							| 10 | 
							
								
							 | 
							rabid | 
							 |-  ( x e. { x e. A | B < C } <-> ( x e. A /\ B < C ) ) | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylibr | 
							 |-  ( ( x e. A /\ B < C ) -> x e. { x e. A | B < C } ) | 
						
						
							| 12 | 
							
								11
							 | 
							adantll | 
							 |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> x e. { x e. A | B < C } ) | 
						
						
							| 13 | 
							
								
							 | 
							elun1 | 
							 |-  ( x e. { x e. A | B < C } -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 15 | 
							
								14
							 | 
							3adantl3 | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ B < C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 16 | 
							
								
							 | 
							3simpa | 
							 |-  ( ( ph /\ x e. A /\ B =/= C ) -> ( ph /\ x e. A ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> ( ph /\ x e. A ) )  | 
						
						
							| 18 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. A ) /\ -. B < C ) -> C e. RR* )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adantl3 | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C e. RR* )  | 
						
						
							| 20 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. A ) /\ -. B < C ) -> B e. RR* )  | 
						
						
							| 21 | 
							
								20
							 | 
							3adantl3 | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> B e. RR* )  | 
						
						
							| 22 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> -. B < C )  | 
						
						
							| 23 | 
							
								19 21 22
							 | 
							xrnltled | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C <_ B )  | 
						
						
							| 24 | 
							
								
							 | 
							necom | 
							 |-  ( B =/= C <-> C =/= B )  | 
						
						
							| 25 | 
							
								24
							 | 
							biimpi | 
							 |-  ( B =/= C -> C =/= B )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							 |-  ( ( B =/= C /\ -. B < C ) -> C =/= B )  | 
						
						
							| 27 | 
							
								26
							 | 
							3ad2antl3 | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C =/= B )  | 
						
						
							| 28 | 
							
								19 21 23 27
							 | 
							xrleneltd | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> C < B )  | 
						
						
							| 29 | 
							
								
							 | 
							id | 
							 |-  ( ( x e. A /\ C < B ) -> ( x e. A /\ C < B ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantll | 
							 |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> ( x e. A /\ C < B ) )  | 
						
						
							| 31 | 
							
								
							 | 
							rabid | 
							 |-  ( x e. { x e. A | C < B } <-> ( x e. A /\ C < B ) ) | 
						
						
							| 32 | 
							
								30 31
							 | 
							sylibr | 
							 |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> x e. { x e. A | C < B } ) | 
						
						
							| 33 | 
							
								
							 | 
							elun2 | 
							 |-  ( x e. { x e. A | C < B } -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 34 | 
							
								32 33
							 | 
							syl | 
							 |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 35 | 
							
								17 28 34
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ x e. A /\ B =/= C ) /\ -. B < C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 36 | 
							
								15 35
							 | 
							pm2.61dan | 
							 |-  ( ( ph /\ x e. A /\ B =/= C ) -> x e. ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 37 | 
							
								1 6 36
							 | 
							rabssd | 
							 |-  ( ph -> { x e. A | B =/= C } C_ ( { x e. A | B < C } u. { x e. A | C < B } ) ) | 
						
						
							| 38 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> B e. RR* )  | 
						
						
							| 39 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> C e. RR* )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> B < C )  | 
						
						
							| 41 | 
							
								38 39 40
							 | 
							xrltned | 
							 |-  ( ( ( ph /\ x e. A ) /\ B < C ) -> B =/= C )  | 
						
						
							| 42 | 
							
								41
							 | 
							ex | 
							 |-  ( ( ph /\ x e. A ) -> ( B < C -> B =/= C ) )  | 
						
						
							| 43 | 
							
								1 42
							 | 
							ss2rabdf | 
							 |-  ( ph -> { x e. A | B < C } C_ { x e. A | B =/= C } ) | 
						
						
							| 44 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> C e. RR* )  | 
						
						
							| 45 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> B e. RR* )  | 
						
						
							| 46 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> C < B )  | 
						
						
							| 47 | 
							
								44 45 46
							 | 
							xrgtned | 
							 |-  ( ( ( ph /\ x e. A ) /\ C < B ) -> B =/= C )  | 
						
						
							| 48 | 
							
								47
							 | 
							ex | 
							 |-  ( ( ph /\ x e. A ) -> ( C < B -> B =/= C ) )  | 
						
						
							| 49 | 
							
								1 48
							 | 
							ss2rabdf | 
							 |-  ( ph -> { x e. A | C < B } C_ { x e. A | B =/= C } ) | 
						
						
							| 50 | 
							
								43 49
							 | 
							unssd | 
							 |-  ( ph -> ( { x e. A | B < C } u. { x e. A | C < B } ) C_ { x e. A | B =/= C } ) | 
						
						
							| 51 | 
							
								37 50
							 | 
							eqssd | 
							 |-  ( ph -> { x e. A | B =/= C } = ( { x e. A | B < C } u. { x e. A | C < B } ) ) |