Metamath Proof Explorer


Theorem pj0i

Description: The projection of the zero vector. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypothesis pj0.1
|- H e. CH
Assertion pj0i
|- ( ( projh ` H ) ` 0h ) = 0h

Proof

Step Hyp Ref Expression
1 pj0.1
 |-  H e. CH
2 1 chshii
 |-  H e. SH
3 oc0
 |-  ( H e. SH -> 0h e. ( _|_ ` H ) )
4 2 3 ax-mp
 |-  0h e. ( _|_ ` H )
5 ax-hv0cl
 |-  0h e. ~H
6 1 5 pjoc2i
 |-  ( 0h e. ( _|_ ` H ) <-> ( ( projh ` H ) ` 0h ) = 0h )
7 4 6 mpbi
 |-  ( ( projh ` H ) ` 0h ) = 0h