Metamath Proof Explorer


Theorem pj11i

Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 26-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjsumt.1
|- G e. CH
pjsumt.2
|- H e. CH
Assertion pj11i
|- ( ( projh ` G ) = ( projh ` H ) <-> G = H )

Proof

Step Hyp Ref Expression
1 pjsumt.1
 |-  G e. CH
2 pjsumt.2
 |-  H e. CH
3 rneq
 |-  ( ( projh ` G ) = ( projh ` H ) -> ran ( projh ` G ) = ran ( projh ` H ) )
4 1 pjrni
 |-  ran ( projh ` G ) = G
5 2 pjrni
 |-  ran ( projh ` H ) = H
6 3 4 5 3eqtr3g
 |-  ( ( projh ` G ) = ( projh ` H ) -> G = H )
7 fveq2
 |-  ( G = H -> ( projh ` G ) = ( projh ` H ) )
8 6 7 impbii
 |-  ( ( projh ` G ) = ( projh ` H ) <-> G = H )