| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							 |-  .+ = ( +g ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							 |-  ( ph -> T e. ( SubGrp ` G ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							 |-  ( ph -> U e. ( SubGrp ` G ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							 |-  ( ph -> ( T i^i U ) = { .0. } ) | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							 |-  ( ph -> T C_ ( Z ` U ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pj1f.p | 
							 |-  P = ( proj1 ` G )  | 
						
						
							| 10 | 
							
								
							 | 
							pj1eq.5 | 
							 |-  ( ph -> X e. ( T .(+) U ) )  | 
						
						
							| 11 | 
							
								
							 | 
							pj1eq.6 | 
							 |-  ( ph -> B e. T )  | 
						
						
							| 12 | 
							
								
							 | 
							pj1eq.7 | 
							 |-  ( ph -> C e. U )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1id | 
							 |-  ( ( ph /\ X e. ( T .(+) U ) ) -> X = ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) )  | 
						
						
							| 14 | 
							
								10 13
							 | 
							mpdan | 
							 |-  ( ph -> X = ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq1d | 
							 |-  ( ph -> ( X = ( B .+ C ) <-> ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) = ( B .+ C ) ) )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1f | 
							 |-  ( ph -> ( T P U ) : ( T .(+) U ) --> T )  | 
						
						
							| 17 | 
							
								16 10
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( ( T P U ) ` X ) e. T )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj2f | 
							 |-  ( ph -> ( U P T ) : ( T .(+) U ) --> U )  | 
						
						
							| 19 | 
							
								18 10
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( ( U P T ) ` X ) e. U )  | 
						
						
							| 20 | 
							
								1 3 4 5 6 7 8 17 11 19 12
							 | 
							subgdisjb | 
							 |-  ( ph -> ( ( ( ( T P U ) ` X ) .+ ( ( U P T ) ` X ) ) = ( B .+ C ) <-> ( ( ( T P U ) ` X ) = B /\ ( ( U P T ) ` X ) = C ) ) )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							bitrd | 
							 |-  ( ph -> ( X = ( B .+ C ) <-> ( ( ( T P U ) ` X ) = B /\ ( ( U P T ) ` X ) = C ) ) )  |