Step |
Hyp |
Ref |
Expression |
1 |
|
pj1fval.v |
|- B = ( Base ` G ) |
2 |
|
pj1fval.a |
|- .+ = ( +g ` G ) |
3 |
|
pj1fval.s |
|- .(+) = ( LSSum ` G ) |
4 |
|
pj1fval.p |
|- P = ( proj1 ` G ) |
5 |
|
elex |
|- ( G e. V -> G e. _V ) |
6 |
5
|
3ad2ant1 |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> G e. _V ) |
7 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
8 |
7 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = B ) |
9 |
8
|
pweqd |
|- ( g = G -> ~P ( Base ` g ) = ~P B ) |
10 |
|
fveq2 |
|- ( g = G -> ( LSSum ` g ) = ( LSSum ` G ) ) |
11 |
10 3
|
eqtr4di |
|- ( g = G -> ( LSSum ` g ) = .(+) ) |
12 |
11
|
oveqd |
|- ( g = G -> ( t ( LSSum ` g ) u ) = ( t .(+) u ) ) |
13 |
|
fveq2 |
|- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
14 |
13 2
|
eqtr4di |
|- ( g = G -> ( +g ` g ) = .+ ) |
15 |
14
|
oveqd |
|- ( g = G -> ( x ( +g ` g ) y ) = ( x .+ y ) ) |
16 |
15
|
eqeq2d |
|- ( g = G -> ( z = ( x ( +g ` g ) y ) <-> z = ( x .+ y ) ) ) |
17 |
16
|
rexbidv |
|- ( g = G -> ( E. y e. u z = ( x ( +g ` g ) y ) <-> E. y e. u z = ( x .+ y ) ) ) |
18 |
17
|
riotabidv |
|- ( g = G -> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) = ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) |
19 |
12 18
|
mpteq12dv |
|- ( g = G -> ( z e. ( t ( LSSum ` g ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) ) = ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) |
20 |
9 9 19
|
mpoeq123dv |
|- ( g = G -> ( t e. ~P ( Base ` g ) , u e. ~P ( Base ` g ) |-> ( z e. ( t ( LSSum ` g ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) ) ) = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
21 |
|
df-pj1 |
|- proj1 = ( g e. _V |-> ( t e. ~P ( Base ` g ) , u e. ~P ( Base ` g ) |-> ( z e. ( t ( LSSum ` g ) u ) |-> ( iota_ x e. t E. y e. u z = ( x ( +g ` g ) y ) ) ) ) ) |
22 |
1
|
fvexi |
|- B e. _V |
23 |
22
|
pwex |
|- ~P B e. _V |
24 |
23 23
|
mpoex |
|- ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) e. _V |
25 |
20 21 24
|
fvmpt |
|- ( G e. _V -> ( proj1 ` G ) = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
26 |
6 25
|
syl |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( proj1 ` G ) = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
27 |
4 26
|
eqtrid |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> P = ( t e. ~P B , u e. ~P B |-> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) ) ) |
28 |
|
oveq12 |
|- ( ( t = T /\ u = U ) -> ( t .(+) u ) = ( T .(+) U ) ) |
29 |
28
|
adantl |
|- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( t .(+) u ) = ( T .(+) U ) ) |
30 |
|
simprl |
|- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> t = T ) |
31 |
|
simprr |
|- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> u = U ) |
32 |
31
|
rexeqdv |
|- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( E. y e. u z = ( x .+ y ) <-> E. y e. U z = ( x .+ y ) ) ) |
33 |
30 32
|
riotaeqbidv |
|- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) = ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) |
34 |
29 33
|
mpteq12dv |
|- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ ( t = T /\ u = U ) ) -> ( z e. ( t .(+) u ) |-> ( iota_ x e. t E. y e. u z = ( x .+ y ) ) ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |
35 |
|
simp2 |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> T C_ B ) |
36 |
22
|
elpw2 |
|- ( T e. ~P B <-> T C_ B ) |
37 |
35 36
|
sylibr |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> T e. ~P B ) |
38 |
|
simp3 |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> U C_ B ) |
39 |
22
|
elpw2 |
|- ( U e. ~P B <-> U C_ B ) |
40 |
38 39
|
sylibr |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> U e. ~P B ) |
41 |
|
ovex |
|- ( T .(+) U ) e. _V |
42 |
41
|
mptex |
|- ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) e. _V |
43 |
42
|
a1i |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) e. _V ) |
44 |
27 34 37 40 43
|
ovmpod |
|- ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) ) |