| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							 |-  .+ = ( +g ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							 |-  ( ph -> T e. ( SubGrp ` G ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							 |-  ( ph -> U e. ( SubGrp ` G ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							 |-  ( ph -> ( T i^i U ) = { .0. } ) | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							 |-  ( ph -> T C_ ( Z ` U ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pj1f.p | 
							 |-  P = ( proj1 ` G )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1ghm | 
							 |-  ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pj1f | 
							 |-  ( ph -> ( T P U ) : ( T .(+) U ) --> T )  | 
						
						
							| 12 | 
							
								11
							 | 
							frnd | 
							 |-  ( ph -> ran ( T P U ) C_ T )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( G |`s T ) = ( G |`s T )  | 
						
						
							| 14 | 
							
								13
							 | 
							resghm2b | 
							 |-  ( ( T e. ( SubGrp ` G ) /\ ran ( T P U ) C_ T ) -> ( ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) <-> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) )  | 
						
						
							| 15 | 
							
								5 12 14
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) <-> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							mpbid | 
							 |-  ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) )  |