Step |
Hyp |
Ref |
Expression |
1 |
|
pj1eu.a |
|- .+ = ( +g ` G ) |
2 |
|
pj1eu.s |
|- .(+) = ( LSSum ` G ) |
3 |
|
pj1eu.o |
|- .0. = ( 0g ` G ) |
4 |
|
pj1eu.z |
|- Z = ( Cntz ` G ) |
5 |
|
pj1eu.2 |
|- ( ph -> T e. ( SubGrp ` G ) ) |
6 |
|
pj1eu.3 |
|- ( ph -> U e. ( SubGrp ` G ) ) |
7 |
|
pj1eu.4 |
|- ( ph -> ( T i^i U ) = { .0. } ) |
8 |
|
pj1eu.5 |
|- ( ph -> T C_ ( Z ` U ) ) |
9 |
|
pj1f.p |
|- P = ( proj1 ` G ) |
10 |
1 2 3 4 5 6 7 8 9
|
pj1ghm |
|- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) ) |
11 |
1 2 3 4 5 6 7 8 9
|
pj1f |
|- ( ph -> ( T P U ) : ( T .(+) U ) --> T ) |
12 |
11
|
frnd |
|- ( ph -> ran ( T P U ) C_ T ) |
13 |
|
eqid |
|- ( G |`s T ) = ( G |`s T ) |
14 |
13
|
resghm2b |
|- ( ( T e. ( SubGrp ` G ) /\ ran ( T P U ) C_ T ) -> ( ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) <-> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) ) |
15 |
5 12 14
|
syl2anc |
|- ( ph -> ( ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom G ) <-> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) ) |
16 |
10 15
|
mpbid |
|- ( ph -> ( T P U ) e. ( ( G |`s ( T .(+) U ) ) GrpHom ( G |`s T ) ) ) |