| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							 |-  .+ = ( +g ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							 |-  ( ph -> T e. ( SubGrp ` G ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							 |-  ( ph -> U e. ( SubGrp ` G ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							 |-  ( ph -> ( T i^i U ) = { .0. } ) | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							 |-  ( ph -> T C_ ( Z ` U ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pj1f.p | 
							 |-  P = ( proj1 ` G )  | 
						
						
							| 10 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. U ) -> T e. ( SubGrp ` G ) )  | 
						
						
							| 11 | 
							
								
							 | 
							subgrcl | 
							 |-  ( T e. ( SubGrp ` G ) -> G e. Grp )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							 |-  ( ( ph /\ X e. U ) -> G e. Grp )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` G ) = ( Base ` G )  | 
						
						
							| 14 | 
							
								13
							 | 
							subgss | 
							 |-  ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							syl | 
							 |-  ( ph -> U C_ ( Base ` G ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							sselda | 
							 |-  ( ( ph /\ X e. U ) -> X e. ( Base ` G ) )  | 
						
						
							| 17 | 
							
								13 1 3
							 | 
							grplid | 
							 |-  ( ( G e. Grp /\ X e. ( Base ` G ) ) -> ( .0. .+ X ) = X )  | 
						
						
							| 18 | 
							
								12 16 17
							 | 
							syl2anc | 
							 |-  ( ( ph /\ X e. U ) -> ( .0. .+ X ) = X )  | 
						
						
							| 19 | 
							
								18
							 | 
							eqcomd | 
							 |-  ( ( ph /\ X e. U ) -> X = ( .0. .+ X ) )  | 
						
						
							| 20 | 
							
								6
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. U ) -> U e. ( SubGrp ` G ) )  | 
						
						
							| 21 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. U ) -> ( T i^i U ) = { .0. } ) | 
						
						
							| 22 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. U ) -> T C_ ( Z ` U ) )  | 
						
						
							| 23 | 
							
								2
							 | 
							lsmub2 | 
							 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U C_ ( T .(+) U ) )  | 
						
						
							| 24 | 
							
								5 6 23
							 | 
							syl2anc | 
							 |-  ( ph -> U C_ ( T .(+) U ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							sselda | 
							 |-  ( ( ph /\ X e. U ) -> X e. ( T .(+) U ) )  | 
						
						
							| 26 | 
							
								3
							 | 
							subg0cl | 
							 |-  ( T e. ( SubGrp ` G ) -> .0. e. T )  | 
						
						
							| 27 | 
							
								10 26
							 | 
							syl | 
							 |-  ( ( ph /\ X e. U ) -> .0. e. T )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ X e. U ) -> X e. U )  | 
						
						
							| 29 | 
							
								1 2 3 4 10 20 21 22 9 25 27 28
							 | 
							pj1eq | 
							 |-  ( ( ph /\ X e. U ) -> ( X = ( .0. .+ X ) <-> ( ( ( T P U ) ` X ) = .0. /\ ( ( U P T ) ` X ) = X ) ) )  | 
						
						
							| 30 | 
							
								19 29
							 | 
							mpbid | 
							 |-  ( ( ph /\ X e. U ) -> ( ( ( T P U ) ` X ) = .0. /\ ( ( U P T ) ` X ) = X ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							simpld | 
							 |-  ( ( ph /\ X e. U ) -> ( ( T P U ) ` X ) = .0. )  |