Metamath Proof Explorer


Theorem pj1val

Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses pj1fval.v
|- B = ( Base ` G )
pj1fval.a
|- .+ = ( +g ` G )
pj1fval.s
|- .(+) = ( LSSum ` G )
pj1fval.p
|- P = ( proj1 ` G )
Assertion pj1val
|- ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( ( T P U ) ` X ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) )

Proof

Step Hyp Ref Expression
1 pj1fval.v
 |-  B = ( Base ` G )
2 pj1fval.a
 |-  .+ = ( +g ` G )
3 pj1fval.s
 |-  .(+) = ( LSSum ` G )
4 pj1fval.p
 |-  P = ( proj1 ` G )
5 1 2 3 4 pj1fval
 |-  ( ( G e. V /\ T C_ B /\ U C_ B ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) )
6 5 adantr
 |-  ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( T P U ) = ( z e. ( T .(+) U ) |-> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) ) )
7 simpr
 |-  ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> z = X )
8 7 eqeq1d
 |-  ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> ( z = ( x .+ y ) <-> X = ( x .+ y ) ) )
9 8 rexbidv
 |-  ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> ( E. y e. U z = ( x .+ y ) <-> E. y e. U X = ( x .+ y ) ) )
10 9 riotabidv
 |-  ( ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) /\ z = X ) -> ( iota_ x e. T E. y e. U z = ( x .+ y ) ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) )
11 simpr
 |-  ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> X e. ( T .(+) U ) )
12 riotaex
 |-  ( iota_ x e. T E. y e. U X = ( x .+ y ) ) e. _V
13 12 a1i
 |-  ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( iota_ x e. T E. y e. U X = ( x .+ y ) ) e. _V )
14 6 10 11 13 fvmptd
 |-  ( ( ( G e. V /\ T C_ B /\ U C_ B ) /\ X e. ( T .(+) U ) ) -> ( ( T P U ) ` X ) = ( iota_ x e. T E. y e. U X = ( x .+ y ) ) )