| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pj1eu.a | 
							 |-  .+ = ( +g ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							pj1eu.s | 
							 |-  .(+) = ( LSSum ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							pj1eu.o | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							pj1eu.z | 
							 |-  Z = ( Cntz ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							pj1eu.2 | 
							 |-  ( ph -> T e. ( SubGrp ` G ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pj1eu.3 | 
							 |-  ( ph -> U e. ( SubGrp ` G ) )  | 
						
						
							| 7 | 
							
								
							 | 
							pj1eu.4 | 
							 |-  ( ph -> ( T i^i U ) = { .0. } ) | 
						
						
							| 8 | 
							
								
							 | 
							pj1eu.5 | 
							 |-  ( ph -> T C_ ( Z ` U ) )  | 
						
						
							| 9 | 
							
								
							 | 
							pj1f.p | 
							 |-  P = ( proj1 ` G )  | 
						
						
							| 10 | 
							
								
							 | 
							incom | 
							 |-  ( U i^i T ) = ( T i^i U )  | 
						
						
							| 11 | 
							
								10 7
							 | 
							eqtrid | 
							 |-  ( ph -> ( U i^i T ) = { .0. } ) | 
						
						
							| 12 | 
							
								4 5 6 8
							 | 
							cntzrecd | 
							 |-  ( ph -> U C_ ( Z ` T ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 6 5 11 12 9
							 | 
							pj1f | 
							 |-  ( ph -> ( U P T ) : ( U .(+) T ) --> U )  | 
						
						
							| 14 | 
							
								2 4
							 | 
							lsmcom2 | 
							 |-  ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) = ( U .(+) T ) )  | 
						
						
							| 15 | 
							
								5 6 8 14
							 | 
							syl3anc | 
							 |-  ( ph -> ( T .(+) U ) = ( U .(+) T ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							feq2d | 
							 |-  ( ph -> ( ( U P T ) : ( T .(+) U ) --> U <-> ( U P T ) : ( U .(+) T ) --> U ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							mpbird | 
							 |-  ( ph -> ( U P T ) : ( T .(+) U ) --> U )  |