Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
|- H e. CH |
2 |
|
pjidm.2 |
|- A e. ~H |
3 |
|
pjadj.3 |
|- B e. ~H |
4 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
5 |
1 3
|
pjpji |
|- B = ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) |
6 |
4 5
|
oveq12i |
|- ( A +h B ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) +h ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
7 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
8 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
9 |
8 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
10 |
1 3
|
pjhclii |
|- ( ( projh ` H ) ` B ) e. ~H |
11 |
8 3
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H |
12 |
7 9 10 11
|
hvadd4i |
|- ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) +h ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
13 |
6 12
|
eqtri |
|- ( A +h B ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
14 |
13
|
fveq2i |
|- ( ( projh ` H ) ` ( A +h B ) ) = ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) |
15 |
1
|
chshii |
|- H e. SH |
16 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
17 |
1 3
|
pjclii |
|- ( ( projh ` H ) ` B ) e. H |
18 |
|
shaddcl |
|- ( ( H e. SH /\ ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` H ) ` B ) e. H ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H ) |
19 |
15 16 17 18
|
mp3an |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H |
20 |
8
|
chshii |
|- ( _|_ ` H ) e. SH |
21 |
8 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
22 |
8 3
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) |
23 |
|
shaddcl |
|- ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) ) |
24 |
20 21 22 23
|
mp3an |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) |
25 |
1
|
pjcompi |
|- ( ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H /\ ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) ) |
26 |
19 24 25
|
mp2an |
|- ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) |
27 |
14 26
|
eqtri |
|- ( ( projh ` H ) ` ( A +h B ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) |