| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjadj.3 |
|- B e. ~H |
| 4 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 5 |
1 3
|
pjpji |
|- B = ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) |
| 6 |
4 5
|
oveq12i |
|- ( A +h B ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) +h ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 7 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 8 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 9 |
8 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
| 10 |
1 3
|
pjhclii |
|- ( ( projh ` H ) ` B ) e. ~H |
| 11 |
8 3
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H |
| 12 |
7 9 10 11
|
hvadd4i |
|- ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) +h ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 13 |
6 12
|
eqtri |
|- ( A +h B ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 14 |
13
|
fveq2i |
|- ( ( projh ` H ) ` ( A +h B ) ) = ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) |
| 15 |
1
|
chshii |
|- H e. SH |
| 16 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
| 17 |
1 3
|
pjclii |
|- ( ( projh ` H ) ` B ) e. H |
| 18 |
|
shaddcl |
|- ( ( H e. SH /\ ( ( projh ` H ) ` A ) e. H /\ ( ( projh ` H ) ` B ) e. H ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H ) |
| 19 |
15 16 17 18
|
mp3an |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H |
| 20 |
8
|
chshii |
|- ( _|_ ` H ) e. SH |
| 21 |
8 2
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) |
| 22 |
8 3
|
pjclii |
|- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) |
| 23 |
|
shaddcl |
|- ( ( ( _|_ ` H ) e. SH /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ( _|_ ` H ) /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ( _|_ ` H ) ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) ) |
| 24 |
20 21 22 23
|
mp3an |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) |
| 25 |
1
|
pjcompi |
|- ( ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) e. H /\ ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) ) |
| 26 |
19 24 25
|
mp2an |
|- ( ( projh ` H ) ` ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) +h ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) |
| 27 |
14 26
|
eqtri |
|- ( ( projh ` H ) ` ( A +h B ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` H ) ` B ) ) |