Step |
Hyp |
Ref |
Expression |
1 |
|
pjadjt.1 |
|- H e. CH |
2 |
|
fveq2 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( projh ` H ) ` A ) = ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) ) |
3 |
2
|
oveq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( projh ` H ) ` A ) .ih B ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) ) |
4 |
|
oveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih ( ( projh ` H ) ` B ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) ) |
5 |
3 4
|
eqeq12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) <-> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) ) ) |
6 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) = ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( B e. ~H , B , 0h ) ) ) |
7 |
|
fveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( projh ` H ) ` B ) = ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
8 |
7
|
oveq2d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) |
9 |
6 8
|
eqeq12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` B ) ) <-> ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) ) ) |
10 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
11 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
12 |
1 10 11
|
pjadjii |
|- ( ( ( projh ` H ) ` if ( A e. ~H , A , 0h ) ) .ih if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) .ih ( ( projh ` H ) ` if ( B e. ~H , B , 0h ) ) ) |
13 |
5 9 12
|
dedth2h |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) ) |