| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjidm.1 |  |-  H e. CH | 
						
							| 2 |  | pjidm.2 |  |-  A e. ~H | 
						
							| 3 |  | pjadj.3 |  |-  B e. ~H | 
						
							| 4 | 3 2 | pjorthi |  |-  ( H e. CH -> ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 ) | 
						
							| 5 | 1 4 | ax-mp |  |-  ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 | 
						
							| 6 | 5 | fveq2i |  |-  ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = ( * ` 0 ) | 
						
							| 7 |  | cj0 |  |-  ( * ` 0 ) = 0 | 
						
							| 8 | 6 7 | eqtri |  |-  ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = 0 | 
						
							| 9 | 1 | choccli |  |-  ( _|_ ` H ) e. CH | 
						
							| 10 | 9 2 | pjhclii |  |-  ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H | 
						
							| 11 | 1 3 | pjhclii |  |-  ( ( projh ` H ) ` B ) e. ~H | 
						
							| 12 | 10 11 | his1i |  |-  ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) = ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) | 
						
							| 13 | 2 3 | pjorthi |  |-  ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) | 
						
							| 14 | 1 13 | ax-mp |  |-  ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 | 
						
							| 15 | 8 12 14 | 3eqtr4ri |  |-  ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) | 
						
							| 16 | 15 | oveq2i |  |-  ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) | 
						
							| 17 | 1 2 | pjhclii |  |-  ( ( projh ` H ) ` A ) e. ~H | 
						
							| 18 | 9 3 | pjhclii |  |-  ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H | 
						
							| 19 |  | his7 |  |-  ( ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` H ) ` B ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) | 
						
							| 20 | 17 11 18 19 | mp3an |  |-  ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) | 
						
							| 21 |  | ax-his2 |  |-  ( ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` B ) e. ~H ) -> ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) ) | 
						
							| 22 | 17 10 11 21 | mp3an |  |-  ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) | 
						
							| 23 | 16 20 22 | 3eqtr4i |  |-  ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) | 
						
							| 24 | 1 3 | pjpji |  |-  B = ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) | 
						
							| 25 | 24 | oveq2i |  |-  ( ( ( projh ` H ) ` A ) .ih B ) = ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) | 
						
							| 26 | 1 2 | pjpji |  |-  A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) | 
						
							| 27 | 26 | oveq1i |  |-  ( A .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) | 
						
							| 28 | 23 25 27 | 3eqtr4i |  |-  ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) |