Step |
Hyp |
Ref |
Expression |
1 |
|
pjop.1 |
|- H e. CH |
2 |
|
pjop.2 |
|- A e. ~H |
3 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
4 |
|
ax-hvaddid |
|- ( ( ( projh ` H ) ` A ) e. ~H -> ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) ) |
5 |
3 4
|
ax-mp |
|- ( ( ( projh ` H ) ` A ) +h 0h ) = ( ( projh ` H ) ` A ) |
6 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
7 |
1 2
|
pjoc1i |
|- ( A e. H <-> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
8 |
7
|
biimpi |
|- ( A e. H -> ( ( projh ` ( _|_ ` H ) ) ` A ) = 0h ) |
9 |
8
|
oveq2d |
|- ( A e. H -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h 0h ) ) |
10 |
6 9
|
eqtr2id |
|- ( A e. H -> ( ( ( projh ` H ) ` A ) +h 0h ) = A ) |
11 |
5 10
|
eqtr3id |
|- ( A e. H -> ( ( projh ` H ) ` A ) = A ) |
12 |
1 2
|
pjclii |
|- ( ( projh ` H ) ` A ) e. H |
13 |
|
eleq1 |
|- ( ( ( projh ` H ) ` A ) = A -> ( ( ( projh ` H ) ` A ) e. H <-> A e. H ) ) |
14 |
12 13
|
mpbii |
|- ( ( ( projh ` H ) ` A ) = A -> A e. H ) |
15 |
11 14
|
impbii |
|- ( A e. H <-> ( ( projh ` H ) ` A ) = A ) |