Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
|- H e. CH |
2 |
|
pjidm.2 |
|- A e. ~H |
3 |
|
pjsslem.1 |
|- G e. CH |
4 |
3
|
choccli |
|- ( _|_ ` G ) e. CH |
5 |
1 2 4
|
pjssmii |
|- ( H C_ ( _|_ ` G ) -> ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) = ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
6 |
5
|
oveq2d |
|- ( H C_ ( _|_ ` G ) -> ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) ) |
7 |
3 2
|
pjpoi |
|- ( ( projh ` G ) ` A ) = ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) |
8 |
7
|
oveq2i |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
9 |
4 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` G ) ) ` A ) e. ~H |
10 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
11 |
9 10
|
hvnegdii |
|- ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) |
12 |
11
|
oveq2i |
|- ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
13 |
|
hvaddsub12 |
|- ( ( ( ( projh ` H ) ` A ) e. ~H /\ A e. ~H /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ~H ) -> ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) ) |
14 |
10 2 9 13
|
mp3an |
|- ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) = ( A +h ( ( ( projh ` H ) ` A ) -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
15 |
12 14
|
eqtr4i |
|- ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) = ( ( ( projh ` H ) ` A ) +h ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
16 |
8 15
|
eqtr4i |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) |
17 |
9 10
|
hvsubcli |
|- ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) e. ~H |
18 |
2 17
|
hvsubvali |
|- ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) = ( A +h ( -u 1 .h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) ) |
19 |
16 18
|
eqtr4i |
|- ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( A -h ( ( ( projh ` ( _|_ ` G ) ) ` A ) -h ( ( projh ` H ) ` A ) ) ) |
20 |
1 3
|
chjcomi |
|- ( H vH G ) = ( G vH H ) |
21 |
3 1
|
chdmm4i |
|- ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) = ( G vH H ) |
22 |
20 21
|
eqtr4i |
|- ( H vH G ) = ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) |
23 |
22
|
fveq2i |
|- ( projh ` ( H vH G ) ) = ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) |
24 |
23
|
fveq1i |
|- ( ( projh ` ( H vH G ) ) ` A ) = ( ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) ` A ) |
25 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
26 |
4 25
|
chincli |
|- ( ( _|_ ` G ) i^i ( _|_ ` H ) ) e. CH |
27 |
26 2
|
pjopi |
|- ( ( projh ` ( _|_ ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ) ` A ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
28 |
24 27
|
eqtri |
|- ( ( projh ` ( H vH G ) ) ` A ) = ( A -h ( ( projh ` ( ( _|_ ` G ) i^i ( _|_ ` H ) ) ) ` A ) ) |
29 |
6 19 28
|
3eqtr4g |
|- ( H C_ ( _|_ ` G ) -> ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) = ( ( projh ` ( H vH G ) ) ` A ) ) |
30 |
29
|
eqcomd |
|- ( H C_ ( _|_ ` G ) -> ( ( projh ` ( H vH G ) ) ` A ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |