Step |
Hyp |
Ref |
Expression |
1 |
|
pjidm.1 |
|- H e. CH |
2 |
1
|
cheli |
|- ( A e. H -> A e. ~H ) |
3 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
4 |
3
|
cheli |
|- ( B e. ( _|_ ` H ) -> B e. ~H ) |
5 |
|
hvaddcl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
6 |
2 4 5
|
syl2an |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A +h B ) e. ~H ) |
7 |
|
axpjpj |
|- ( ( H e. CH /\ ( A +h B ) e. ~H ) -> ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) ) |
8 |
1 6 7
|
sylancr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) ) |
9 |
|
eqid |
|- ( A +h B ) = ( A +h B ) |
10 |
|
axpjcl |
|- ( ( H e. CH /\ ( A +h B ) e. ~H ) -> ( ( projh ` H ) ` ( A +h B ) ) e. H ) |
11 |
1 6 10
|
sylancr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) e. H ) |
12 |
|
axpjcl |
|- ( ( ( _|_ ` H ) e. CH /\ ( A +h B ) e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) |
13 |
3 6 12
|
sylancr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) |
14 |
|
simpl |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> A e. H ) |
15 |
|
simpr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> B e. ( _|_ ` H ) ) |
16 |
1
|
chocunii |
|- ( ( ( ( ( projh ` H ) ` ( A +h B ) ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) /\ ( A e. H /\ B e. ( _|_ ` H ) ) ) -> ( ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) /\ ( A +h B ) = ( A +h B ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
17 |
11 13 14 15 16
|
syl22anc |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) /\ ( A +h B ) = ( A +h B ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
18 |
9 17
|
mpan2i |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
19 |
8 18
|
mpd |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) |
20 |
19
|
simpld |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) = A ) |