| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
1
|
cheli |
|- ( A e. H -> A e. ~H ) |
| 3 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 4 |
3
|
cheli |
|- ( B e. ( _|_ ` H ) -> B e. ~H ) |
| 5 |
|
hvaddcl |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
| 6 |
2 4 5
|
syl2an |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A +h B ) e. ~H ) |
| 7 |
|
axpjpj |
|- ( ( H e. CH /\ ( A +h B ) e. ~H ) -> ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) ) |
| 8 |
1 6 7
|
sylancr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) ) |
| 9 |
|
eqid |
|- ( A +h B ) = ( A +h B ) |
| 10 |
|
axpjcl |
|- ( ( H e. CH /\ ( A +h B ) e. ~H ) -> ( ( projh ` H ) ` ( A +h B ) ) e. H ) |
| 11 |
1 6 10
|
sylancr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) e. H ) |
| 12 |
|
axpjcl |
|- ( ( ( _|_ ` H ) e. CH /\ ( A +h B ) e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) |
| 13 |
3 6 12
|
sylancr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) |
| 14 |
|
simpl |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> A e. H ) |
| 15 |
|
simpr |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> B e. ( _|_ ` H ) ) |
| 16 |
1
|
chocunii |
|- ( ( ( ( ( projh ` H ) ` ( A +h B ) ) e. H /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) e. ( _|_ ` H ) ) /\ ( A e. H /\ B e. ( _|_ ` H ) ) ) -> ( ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) /\ ( A +h B ) = ( A +h B ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
| 17 |
11 13 14 15 16
|
syl22anc |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) /\ ( A +h B ) = ( A +h B ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
| 18 |
9 17
|
mpan2i |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( A +h B ) = ( ( ( projh ` H ) ` ( A +h B ) ) +h ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) ) |
| 19 |
8 18
|
mpd |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( ( projh ` H ) ` ( A +h B ) ) = A /\ ( ( projh ` ( _|_ ` H ) ) ` ( A +h B ) ) = B ) ) |
| 20 |
19
|
simpld |
|- ( ( A e. H /\ B e. ( _|_ ` H ) ) -> ( ( projh ` H ) ` ( A +h B ) ) = A ) |