| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjsslem.1 |
|- G e. CH |
| 4 |
3 2
|
pjhclii |
|- ( ( projh ` G ) ` A ) e. ~H |
| 5 |
4
|
normcli |
|- ( normh ` ( ( projh ` G ) ` A ) ) e. RR |
| 6 |
5
|
resqcli |
|- ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) e. RR |
| 7 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 8 |
7
|
normcli |
|- ( normh ` ( ( projh ` H ) ` A ) ) e. RR |
| 9 |
8
|
resqcli |
|- ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) e. RR |
| 10 |
6 9
|
subge0i |
|- ( 0 <_ ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) ) |
| 11 |
|
his2sub |
|- ( ( ( ( projh ` G ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H /\ A e. ~H ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( ( projh ` G ) ` A ) .ih A ) - ( ( ( projh ` H ) ` A ) .ih A ) ) ) |
| 12 |
4 7 2 11
|
mp3an |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( ( projh ` G ) ` A ) .ih A ) - ( ( ( projh ` H ) ` A ) .ih A ) ) |
| 13 |
3 2
|
pjinormii |
|- ( ( ( projh ` G ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) |
| 14 |
1 2
|
pjinormii |
|- ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) |
| 15 |
13 14
|
oveq12i |
|- ( ( ( ( projh ` G ) ` A ) .ih A ) - ( ( ( projh ` H ) ` A ) .ih A ) ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |
| 16 |
12 15
|
eqtri |
|- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |
| 17 |
16
|
breq2i |
|- ( 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) <-> 0 <_ ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) ) |
| 18 |
|
normge0 |
|- ( ( ( projh ` H ) ` A ) e. ~H -> 0 <_ ( normh ` ( ( projh ` H ) ` A ) ) ) |
| 19 |
7 18
|
ax-mp |
|- 0 <_ ( normh ` ( ( projh ` H ) ` A ) ) |
| 20 |
|
normge0 |
|- ( ( ( projh ` G ) ` A ) e. ~H -> 0 <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |
| 21 |
4 20
|
ax-mp |
|- 0 <_ ( normh ` ( ( projh ` G ) ` A ) ) |
| 22 |
8 5
|
le2sqi |
|- ( ( 0 <_ ( normh ` ( ( projh ` H ) ` A ) ) /\ 0 <_ ( normh ` ( ( projh ` G ) ` A ) ) ) -> ( ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) <-> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) ) ) |
| 23 |
19 21 22
|
mp2an |
|- ( ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) <-> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) ) |
| 24 |
10 17 23
|
3bitr4i |
|- ( 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) <-> ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |