Step |
Hyp |
Ref |
Expression |
1 |
|
pjds3.1 |
|- F e. CH |
2 |
|
pjds3.2 |
|- G e. CH |
3 |
|
pjds3.3 |
|- H e. CH |
4 |
|
simpl |
|- ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) -> A e. ( ( F vH G ) vH H ) ) |
5 |
3
|
choccli |
|- ( _|_ ` H ) e. CH |
6 |
1 2 5
|
chlubii |
|- ( ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) -> ( F vH G ) C_ ( _|_ ` H ) ) |
7 |
1 2
|
chjcli |
|- ( F vH G ) e. CH |
8 |
7 3
|
pjdsi |
|- ( ( A e. ( ( F vH G ) vH H ) /\ ( F vH G ) C_ ( _|_ ` H ) ) -> A = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
9 |
4 6 8
|
syl2an |
|- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> A = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
10 |
1 2
|
osumi |
|- ( F C_ ( _|_ ` G ) -> ( F +H G ) = ( F vH G ) ) |
11 |
10
|
fveq2d |
|- ( F C_ ( _|_ ` G ) -> ( projh ` ( F +H G ) ) = ( projh ` ( F vH G ) ) ) |
12 |
11
|
fveq1d |
|- ( F C_ ( _|_ ` G ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( projh ` ( F vH G ) ) ` A ) ) |
13 |
12
|
oveq1d |
|- ( F C_ ( _|_ ` G ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
14 |
13
|
ad2antlr |
|- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` ( F vH G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) ) |
15 |
7 3
|
chjcli |
|- ( ( F vH G ) vH H ) e. CH |
16 |
15
|
cheli |
|- ( A e. ( ( F vH G ) vH H ) -> A e. ~H ) |
17 |
1 2
|
pjsumi |
|- ( A e. ~H -> ( F C_ ( _|_ ` G ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) ) ) |
18 |
17
|
imp |
|- ( ( A e. ~H /\ F C_ ( _|_ ` G ) ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |
19 |
16 18
|
sylan |
|- ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) -> ( ( projh ` ( F +H G ) ) ` A ) = ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) ) |
20 |
19
|
oveq1d |
|- ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) +h ( ( projh ` H ) ` A ) ) ) |
21 |
20
|
adantr |
|- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> ( ( ( projh ` ( F +H G ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) +h ( ( projh ` H ) ` A ) ) ) |
22 |
9 14 21
|
3eqtr2d |
|- ( ( ( A e. ( ( F vH G ) vH H ) /\ F C_ ( _|_ ` G ) ) /\ ( F C_ ( _|_ ` H ) /\ G C_ ( _|_ ` H ) ) ) -> A = ( ( ( ( projh ` F ) ` A ) +h ( ( projh ` G ) ` A ) ) +h ( ( projh ` H ) ` A ) ) ) |